/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 161 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsTAProof [FINISHED, 774 ms] (8) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a(f, a(f, x)) -> a(x, g) a(x, g) -> a(f, a(g, a(f, x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(f) -> f encArg(g) -> g encArg(cons_a(x_1, x_2)) -> a(encArg(x_1), encArg(x_2)) encode_a(x_1, x_2) -> a(encArg(x_1), encArg(x_2)) encode_f -> f encode_g -> g ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a(f, a(f, x)) -> a(x, g) a(x, g) -> a(f, a(g, a(f, x))) The (relative) TRS S consists of the following rules: encArg(f) -> f encArg(g) -> g encArg(cons_a(x_1, x_2)) -> a(encArg(x_1), encArg(x_2)) encode_a(x_1, x_2) -> a(encArg(x_1), encArg(x_2)) encode_f -> f encode_g -> g Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a(f, a(f, x)) -> a(x, g) a(x, g) -> a(f, a(g, a(f, x))) The (relative) TRS S consists of the following rules: encArg(f) -> f encArg(g) -> g encArg(cons_a(x_1, x_2)) -> a(encArg(x_1), encArg(x_2)) encode_a(x_1, x_2) -> a(encArg(x_1), encArg(x_2)) encode_f -> f encode_g -> g Rewrite Strategy: FULL ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a(f, a(f, x)) -> a(x, g) a(x, g) -> a(f, a(g, a(f, x))) encArg(f) -> f encArg(g) -> g encArg(cons_a(x_1, x_2)) -> a(encArg(x_1), encArg(x_2)) encode_a(x_1, x_2) -> a(encArg(x_1), encArg(x_2)) encode_f -> f encode_g -> g S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 5. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5] transitions: f0() -> 0 g0() -> 0 cons_a0(0, 0) -> 0 a0(0, 0) -> 1 encArg0(0) -> 2 encode_a0(0, 0) -> 3 encode_f0() -> 4 encode_g0() -> 5 f1() -> 6 g1() -> 8 a1(6, 0) -> 9 a1(8, 9) -> 7 a1(6, 7) -> 1 f1() -> 2 g1() -> 2 encArg1(0) -> 10 encArg1(0) -> 11 a1(10, 11) -> 2 a1(10, 11) -> 3 f1() -> 4 g1() -> 5 a1(6, 6) -> 9 a1(6, 7) -> 9 f1() -> 10 f1() -> 11 g1() -> 10 g1() -> 11 a1(10, 11) -> 10 a1(10, 11) -> 11 f2() -> 12 g2() -> 14 a2(12, 10) -> 15 a2(14, 15) -> 13 a2(12, 13) -> 2 a2(12, 13) -> 3 a2(12, 13) -> 10 a2(12, 13) -> 11 g2() -> 16 a2(11, 16) -> 2 a2(11, 16) -> 3 a2(11, 16) -> 10 a2(11, 16) -> 11 a2(16, 16) -> 2 a2(16, 16) -> 3 a2(16, 16) -> 10 a2(16, 16) -> 11 a2(13, 16) -> 2 a2(13, 16) -> 3 a2(13, 16) -> 10 a2(13, 16) -> 11 a2(11, 16) -> 15 a2(16, 16) -> 15 g3() -> 17 a3(13, 17) -> 15 a2(12, 12) -> 15 a2(12, 13) -> 15 f3() -> 18 g3() -> 20 a3(18, 11) -> 21 a3(20, 21) -> 19 a3(18, 19) -> 2 a3(18, 19) -> 3 a3(18, 19) -> 10 a3(18, 19) -> 11 a3(18, 16) -> 21 a3(18, 13) -> 21 a3(18, 19) -> 15 a2(19, 16) -> 2 a2(19, 16) -> 3 a2(19, 16) -> 10 a2(19, 16) -> 11 a3(19, 17) -> 15 a2(11, 16) -> 21 a2(16, 16) -> 21 a3(13, 17) -> 21 g4() -> 22 a4(19, 22) -> 21 a2(12, 18) -> 15 a2(12, 13) -> 21 f4() -> 23 g4() -> 25 a4(23, 13) -> 26 a4(25, 26) -> 24 a4(23, 24) -> 15 a3(18, 19) -> 21 a3(18, 18) -> 21 a4(23, 19) -> 26 a4(23, 24) -> 21 f5() -> 27 g5() -> 29 a5(27, 19) -> 30 a5(29, 30) -> 28 a5(27, 28) -> 21 ---------------------------------------- (8) BOUNDS(1, n^1)