/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 36 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsProof [FINISHED, 0 ms] (8) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a) -> f(b) g(b) -> g(a) f(x) -> g(x) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(a) -> a encArg(b) -> b encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b encode_g(x_1) -> g(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a) -> f(b) g(b) -> g(a) f(x) -> g(x) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a) -> f(b) g(b) -> g(a) f(x) -> g(x) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a) -> f(b) g(b) -> g(a) f(x) -> g(x) encArg(a) -> a encArg(b) -> b encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b encode_g(x_1) -> g(encArg(x_1)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) CpxTrsMatchBoundsProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 3. The certificate found is represented by the following graph. "[5, 6, 14, 15, 16, 17, 18, 19] {(5,6,[f_1|0, g_1|0, encArg_1|0, encode_f_1|0, encode_a|0, encode_b|0, encode_g_1|0, g_1|1, a|1, b|1]), (5,14,[f_1|1, g_1|2]), (5,15,[g_1|1]), (5,16,[f_1|1, g_1|1, g_1|2]), (5,17,[g_1|2]), (5,18,[f_1|2, g_1|3]), (5,19,[g_1|3]), (6,6,[a|0, b|0, cons_f_1|0, cons_g_1|0]), (14,6,[b|1]), (15,6,[a|1]), (16,6,[encArg_1|1, a|1, b|1]), (16,16,[f_1|1, g_1|1, g_1|2]), (16,18,[f_1|2, g_1|3]), (16,17,[g_1|2]), (16,19,[g_1|3]), (17,6,[a|2]), (18,6,[b|2]), (19,6,[a|3])}" ---------------------------------------- (8) BOUNDS(1, n^1)