/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 144 ms] (4) CpxRelTRS (5) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] (6) CpxRelTRS (7) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxWeightedTrs (11) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedTrs (13) CompletionProof [UPPER BOUND(ID), 0 ms] (14) CpxTypedWeightedCompleteTrs (15) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) CompleteCoflocoProof [FINISHED, 452 ms] (18) BOUNDS(1, n^2) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(g(x, y), f(y, y)) -> f(g(y, x), y) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(g(x, y), f(y, y)) -> f(g(y, x), y) The (relative) TRS S consists of the following rules: encArg(g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(g(x, y), f(y, y)) -> f(g(y, x), y) The (relative) TRS S consists of the following rules: encArg(g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (5) NonCtorToCtorProof (UPPER BOUND(ID)) transformed non-ctor to ctor-system ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(g(x, y), c_f(y, y)) -> f(g(y, x), y) The (relative) TRS S consists of the following rules: encArg(g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) f(x0, x1) -> c_f(x0, x1) Rewrite Strategy: FULL ---------------------------------------- (7) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS is a non-duplicating overlay system, we have rc = irc. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(g(x, y), c_f(y, y)) -> f(g(y, x), y) The (relative) TRS S consists of the following rules: encArg(g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) f(x0, x1) -> c_f(x0, x1) Rewrite Strategy: INNERMOST ---------------------------------------- (9) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(g(x, y), c_f(y, y)) -> f(g(y, x), y) [1] encArg(g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] f(x0, x1) -> c_f(x0, x1) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (11) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(g(x, y), c_f(y, y)) -> f(g(y, x), y) [1] encArg(g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] f(x0, x1) -> c_f(x0, x1) [0] The TRS has the following type information: f :: g:c_f:cons_f -> g:c_f:cons_f -> g:c_f:cons_f g :: g:c_f:cons_f -> g:c_f:cons_f -> g:c_f:cons_f c_f :: g:c_f:cons_f -> g:c_f:cons_f -> g:c_f:cons_f encArg :: g:c_f:cons_f -> g:c_f:cons_f cons_f :: g:c_f:cons_f -> g:c_f:cons_f -> g:c_f:cons_f encode_f :: g:c_f:cons_f -> g:c_f:cons_f -> g:c_f:cons_f encode_g :: g:c_f:cons_f -> g:c_f:cons_f -> g:c_f:cons_f Rewrite Strategy: INNERMOST ---------------------------------------- (13) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: encArg(v0) -> null_encArg [0] encode_f(v0, v1) -> null_encode_f [0] encode_g(v0, v1) -> null_encode_g [0] f(v0, v1) -> null_f [0] And the following fresh constants: null_encArg, null_encode_f, null_encode_g, null_f ---------------------------------------- (14) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(g(x, y), c_f(y, y)) -> f(g(y, x), y) [1] encArg(g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] f(x0, x1) -> c_f(x0, x1) [0] encArg(v0) -> null_encArg [0] encode_f(v0, v1) -> null_encode_f [0] encode_g(v0, v1) -> null_encode_g [0] f(v0, v1) -> null_f [0] The TRS has the following type information: f :: g:c_f:cons_f:null_encArg:null_encode_f:null_encode_g:null_f -> g:c_f:cons_f:null_encArg:null_encode_f:null_encode_g:null_f -> g:c_f:cons_f:null_encArg:null_encode_f:null_encode_g:null_f g :: g:c_f:cons_f:null_encArg:null_encode_f:null_encode_g:null_f -> g:c_f:cons_f:null_encArg:null_encode_f:null_encode_g:null_f -> g:c_f:cons_f:null_encArg:null_encode_f:null_encode_g:null_f c_f :: g:c_f:cons_f:null_encArg:null_encode_f:null_encode_g:null_f -> g:c_f:cons_f:null_encArg:null_encode_f:null_encode_g:null_f -> g:c_f:cons_f:null_encArg:null_encode_f:null_encode_g:null_f encArg :: g:c_f:cons_f:null_encArg:null_encode_f:null_encode_g:null_f -> g:c_f:cons_f:null_encArg:null_encode_f:null_encode_g:null_f cons_f :: g:c_f:cons_f:null_encArg:null_encode_f:null_encode_g:null_f -> g:c_f:cons_f:null_encArg:null_encode_f:null_encode_g:null_f -> g:c_f:cons_f:null_encArg:null_encode_f:null_encode_g:null_f encode_f :: g:c_f:cons_f:null_encArg:null_encode_f:null_encode_g:null_f -> g:c_f:cons_f:null_encArg:null_encode_f:null_encode_g:null_f -> g:c_f:cons_f:null_encArg:null_encode_f:null_encode_g:null_f encode_g :: g:c_f:cons_f:null_encArg:null_encode_f:null_encode_g:null_f -> g:c_f:cons_f:null_encArg:null_encode_f:null_encode_g:null_f -> g:c_f:cons_f:null_encArg:null_encode_f:null_encode_g:null_f null_encArg :: g:c_f:cons_f:null_encArg:null_encode_f:null_encode_g:null_f null_encode_f :: g:c_f:cons_f:null_encArg:null_encode_f:null_encode_g:null_f null_encode_g :: g:c_f:cons_f:null_encArg:null_encode_f:null_encode_g:null_f null_f :: g:c_f:cons_f:null_encArg:null_encode_f:null_encode_g:null_f Rewrite Strategy: INNERMOST ---------------------------------------- (15) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: null_encArg => 0 null_encode_f => 0 null_encode_g => 0 null_f => 0 ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_f(z, z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_g(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_g(z, z') -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 f(z, z') -{ 1 }-> f(1 + y + x, y) :|: z = 1 + x + y, z' = 1 + y + y, x >= 0, y >= 0 f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 f(z, z') -{ 0 }-> 1 + x0 + x1 :|: z = x0, x0 >= 0, x1 >= 0, z' = x1 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (17) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V1, V),0,[f(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V),0,[encArg(V1, Out)],[V1 >= 0]). eq(start(V1, V),0,[fun(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V),0,[fun1(V1, V, Out)],[V1 >= 0,V >= 0]). eq(f(V1, V, Out),1,[f(1 + V3 + V2, V3, Ret)],[Out = Ret,V1 = 1 + V2 + V3,V = 1 + 2*V3,V2 >= 0,V3 >= 0]). eq(encArg(V1, Out),0,[encArg(V5, Ret01),encArg(V4, Ret1)],[Out = 1 + Ret01 + Ret1,V5 >= 0,V1 = 1 + V4 + V5,V4 >= 0]). eq(encArg(V1, Out),0,[encArg(V6, Ret0),encArg(V7, Ret11),f(Ret0, Ret11, Ret2)],[Out = Ret2,V6 >= 0,V1 = 1 + V6 + V7,V7 >= 0]). eq(fun(V1, V, Out),0,[encArg(V9, Ret02),encArg(V8, Ret12),f(Ret02, Ret12, Ret3)],[Out = Ret3,V9 >= 0,V8 >= 0,V1 = V9,V = V8]). eq(fun1(V1, V, Out),0,[encArg(V11, Ret011),encArg(V10, Ret13)],[Out = 1 + Ret011 + Ret13,V11 >= 0,V10 >= 0,V1 = V11,V = V10]). eq(f(V1, V, Out),0,[],[Out = 1 + V12 + V13,V1 = V13,V13 >= 0,V12 >= 0,V = V12]). eq(encArg(V1, Out),0,[],[Out = 0,V14 >= 0,V1 = V14]). eq(fun(V1, V, Out),0,[],[Out = 0,V16 >= 0,V15 >= 0,V1 = V16,V = V15]). eq(fun1(V1, V, Out),0,[],[Out = 0,V18 >= 0,V17 >= 0,V1 = V18,V = V17]). eq(f(V1, V, Out),0,[],[Out = 0,V19 >= 0,V20 >= 0,V1 = V19,V = V20]). input_output_vars(f(V1,V,Out),[V1,V],[Out]). input_output_vars(encArg(V1,Out),[V1],[Out]). input_output_vars(fun(V1,V,Out),[V1,V],[Out]). input_output_vars(fun1(V1,V,Out),[V1,V],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. recursive : [f/3] 1. recursive [non_tail,multiple] : [encArg/2] 2. non_recursive : [fun/3] 3. non_recursive : [fun1/3] 4. non_recursive : [start/2] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into f/3 1. SCC is partially evaluated into encArg/2 2. SCC is partially evaluated into fun/3 3. SCC is partially evaluated into fun1/3 4. SCC is partially evaluated into start/2 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations f/3 * CE 6 is refined into CE [15] * CE 7 is refined into CE [16] * CE 5 is refined into CE [17] ### Cost equations --> "Loop" of f/3 * CEs [17] --> Loop 9 * CEs [15] --> Loop 10 * CEs [16] --> Loop 11 ### Ranking functions of CR f(V1,V,Out) * RF of phase [9]: [V] #### Partial ranking functions of CR f(V1,V,Out) * Partial RF of phase [9]: - RF of loop [9:1]: V ### Specialization of cost equations encArg/2 * CE 10 is refined into CE [18] * CE 8 is refined into CE [19] * CE 9 is refined into CE [20,21,22] ### Cost equations --> "Loop" of encArg/2 * CEs [22] --> Loop 12 * CEs [19,21] --> Loop 13 * CEs [20] --> Loop 14 * CEs [18] --> Loop 15 ### Ranking functions of CR encArg(V1,Out) * RF of phase [12,13,14]: [V1] #### Partial ranking functions of CR encArg(V1,Out) * Partial RF of phase [12,13,14]: - RF of loop [12:1,12:2,13:1,13:2,14:1,14:2]: V1 ### Specialization of cost equations fun/3 * CE 11 is refined into CE [23,24,25,26,27,28,29,30,31] * CE 12 is refined into CE [32] ### Cost equations --> "Loop" of fun/3 * CEs [30,31] --> Loop 16 * CEs [28] --> Loop 17 * CEs [26] --> Loop 18 * CEs [24] --> Loop 19 * CEs [23,25,27,29,32] --> Loop 20 ### Ranking functions of CR fun(V1,V,Out) #### Partial ranking functions of CR fun(V1,V,Out) ### Specialization of cost equations fun1/3 * CE 13 is refined into CE [33,34,35,36] * CE 14 is refined into CE [37] ### Cost equations --> "Loop" of fun1/3 * CEs [36] --> Loop 21 * CEs [35] --> Loop 22 * CEs [34] --> Loop 23 * CEs [33] --> Loop 24 * CEs [37] --> Loop 25 ### Ranking functions of CR fun1(V1,V,Out) #### Partial ranking functions of CR fun1(V1,V,Out) ### Specialization of cost equations start/2 * CE 1 is refined into CE [38,39,40] * CE 2 is refined into CE [41,42] * CE 3 is refined into CE [43,44,45,46,47] * CE 4 is refined into CE [48,49,50,51,52] ### Cost equations --> "Loop" of start/2 * CEs [38,39,40,41,42,43,44,45,46,47,48,49,50,51,52] --> Loop 26 ### Ranking functions of CR start(V1,V) #### Partial ranking functions of CR start(V1,V) Computing Bounds ===================================== #### Cost of chains of f(V1,V,Out): * Chain [[9],11]: 1*it(9)+0 Such that:it(9) =< V with precondition: [Out=0,V>=1,2*V1>=V+1] * Chain [[9],10]: 1*it(9)+0 Such that:it(9) =< V1+V-Out+1 with precondition: [Out>=V1+1,2*V1>=V+1,V+2*V1+1>=2*Out] * Chain [11]: 0 with precondition: [Out=0,V1>=0,V>=0] * Chain [10]: 0 with precondition: [V+V1+1=Out,V1>=0,V>=0] #### Cost of chains of encArg(V1,Out): * Chain [15]: 0 with precondition: [Out=0,V1>=0] * Chain [multiple([12,13,14],[[15]])]: 1*s(6)+1*s(7)+0 Such that:it([15]) =< V1+1 aux(4) =< V1 aux(5) =< V1/2 it(13) =< aux(4) it(12) =< aux(5) aux(3) =< aux(4)+1 it(12) =< it([15])*(1/2)+aux(5) it(13) =< it([15])*(1/2)+aux(5) s(7) =< it(13)*aux(3) s(6) =< it(12)*aux(4) with precondition: [V1>=1,Out>=0,V1>=Out] #### Cost of chains of fun(V1,V,Out): * Chain [20]: 2*s(15)+2*s(16)+2*s(17)+2*s(24)+2*s(25)+0 Such that:aux(8) =< V1 aux(9) =< V1+1 aux(10) =< V1/2 aux(11) =< V aux(12) =< V+1 aux(13) =< V/2 s(21) =< aux(8) s(22) =< aux(10) s(23) =< aux(8)+1 s(22) =< aux(9)*(1/2)+aux(10) s(21) =< aux(9)*(1/2)+aux(10) s(24) =< s(21)*s(23) s(25) =< s(22)*aux(8) s(17) =< aux(11) s(12) =< aux(11) s(13) =< aux(13) s(14) =< aux(11)+1 s(13) =< aux(12)*(1/2)+aux(13) s(12) =< aux(12)*(1/2)+aux(13) s(15) =< s(12)*s(14) s(16) =< s(13)*aux(11) with precondition: [Out=0,V1>=0,V>=0] * Chain [19]: 0 with precondition: [Out=1,V1>=0,V>=0] * Chain [18]: 1*s(50)+1*s(51)+0 Such that:s(45) =< V s(44) =< V+1 s(46) =< V/2 s(47) =< s(45) s(48) =< s(46) s(49) =< s(45)+1 s(48) =< s(44)*(1/2)+s(46) s(47) =< s(44)*(1/2)+s(46) s(50) =< s(47)*s(49) s(51) =< s(48)*s(45) with precondition: [V1>=0,V>=1,Out>=1,V+1>=Out] * Chain [17]: 1*s(58)+1*s(59)+0 Such that:s(53) =< V1 s(52) =< V1+1 s(54) =< V1/2 s(55) =< s(53) s(56) =< s(54) s(57) =< s(53)+1 s(56) =< s(52)*(1/2)+s(54) s(55) =< s(52)*(1/2)+s(54) s(58) =< s(55)*s(57) s(59) =< s(56)*s(53) with precondition: [V1>=1,V>=0,Out>=1,V1+1>=Out] * Chain [16]: 2*s(66)+2*s(67)+2*s(74)+2*s(75)+1*s(92)+0 Such that:aux(15) =< V1 aux(16) =< V1+1 aux(17) =< V1/2 aux(18) =< V aux(19) =< V+1 aux(20) =< V/2 s(71) =< aux(18) s(72) =< aux(20) s(73) =< aux(18)+1 s(72) =< aux(19)*(1/2)+aux(20) s(71) =< aux(19)*(1/2)+aux(20) s(74) =< s(71)*s(73) s(75) =< s(72)*aux(18) s(63) =< aux(15) s(64) =< aux(17) s(65) =< aux(15)+1 s(64) =< aux(16)*(1/2)+aux(17) s(63) =< aux(16)*(1/2)+aux(17) s(66) =< s(63)*s(65) s(67) =< s(64)*aux(15) s(92) =< aux(18) with precondition: [V1>=1,V>=1,Out>=1,V+V1+1>=Out] #### Cost of chains of fun1(V1,V,Out): * Chain [25]: 0 with precondition: [Out=0,V1>=0,V>=0] * Chain [24]: 0 with precondition: [Out=1,V1>=0,V>=0] * Chain [23]: 1*s(99)+1*s(100)+0 Such that:s(94) =< V s(93) =< V+1 s(95) =< V/2 s(96) =< s(94) s(97) =< s(95) s(98) =< s(94)+1 s(97) =< s(93)*(1/2)+s(95) s(96) =< s(93)*(1/2)+s(95) s(99) =< s(96)*s(98) s(100) =< s(97)*s(94) with precondition: [V1>=0,V>=1,Out>=1,V+1>=Out] * Chain [22]: 1*s(107)+1*s(108)+0 Such that:s(102) =< V1 s(101) =< V1+1 s(103) =< V1/2 s(104) =< s(102) s(105) =< s(103) s(106) =< s(102)+1 s(105) =< s(101)*(1/2)+s(103) s(104) =< s(101)*(1/2)+s(103) s(107) =< s(104)*s(106) s(108) =< s(105)*s(102) with precondition: [V1>=1,V>=0,Out>=1,V1+1>=Out] * Chain [21]: 1*s(115)+1*s(116)+1*s(123)+1*s(124)+0 Such that:s(110) =< V1 s(109) =< V1+1 s(111) =< V1/2 s(118) =< V s(117) =< V+1 s(119) =< V/2 s(120) =< s(118) s(121) =< s(119) s(122) =< s(118)+1 s(121) =< s(117)*(1/2)+s(119) s(120) =< s(117)*(1/2)+s(119) s(123) =< s(120)*s(122) s(124) =< s(121)*s(118) s(112) =< s(110) s(113) =< s(111) s(114) =< s(110)+1 s(113) =< s(109)*(1/2)+s(111) s(112) =< s(109)*(1/2)+s(111) s(115) =< s(112)*s(114) s(116) =< s(113)*s(110) with precondition: [V1>=1,V>=1,Out>=1,V+V1+1>=Out] #### Cost of chains of start(V1,V): * Chain [26]: 5*s(125)+8*s(133)+8*s(134)+7*s(150)+7*s(151)+0 Such that:aux(21) =< V1 aux(22) =< V1+1 aux(23) =< V1/2 aux(24) =< V aux(25) =< V+1 aux(26) =< V/2 s(125) =< aux(24) s(130) =< aux(21) s(131) =< aux(23) s(132) =< aux(21)+1 s(131) =< aux(22)*(1/2)+aux(23) s(130) =< aux(22)*(1/2)+aux(23) s(133) =< s(130)*s(132) s(134) =< s(131)*aux(21) s(147) =< aux(24) s(148) =< aux(26) s(149) =< aux(24)+1 s(148) =< aux(25)*(1/2)+aux(26) s(147) =< aux(25)*(1/2)+aux(26) s(150) =< s(147)*s(149) s(151) =< s(148)*aux(24) with precondition: [V1>=0] Closed-form bounds of start(V1,V): ------------------------------------- * Chain [26] with precondition: [V1>=0] - Upper bound: 8*V1*V1+8*V1+V1/2*(8*V1)+nat(V)*12+nat(V)*7*nat(V)+nat(V)*7*nat(V/2) - Complexity: n^2 ### Maximum cost of start(V1,V): 8*V1*V1+8*V1+V1/2*(8*V1)+nat(V)*12+nat(V)*7*nat(V)+nat(V)*7*nat(V/2) Asymptotic class: n^2 * Total analysis performed in 365 ms. ---------------------------------------- (18) BOUNDS(1, n^2)