/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- KILLED proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 63 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 3 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 2033 ms] (14) BOUNDS(1, INF) (15) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (16) CpxTRS (17) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] (18) CpxRelTRS (19) RcToIrcProof [BOTH BOUNDS(ID, ID), 6 ms] (20) CpxRelTRS (21) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CpxWeightedTrs (23) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CpxTypedWeightedTrs (25) CompletionProof [UPPER BOUND(ID), 0 ms] (26) CpxTypedWeightedCompleteTrs (27) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) CompletionProof [UPPER BOUND(ID), 0 ms] (30) CpxTypedWeightedCompleteTrs (31) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (32) CpxTypedWeightedCompleteTrs (33) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (34) CpxRNTS (35) InliningProof [UPPER BOUND(ID), 191 ms] (36) CpxRNTS (37) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (38) CpxRNTS (39) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (40) CpxRNTS (41) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 89 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 33 ms] (46) CpxRNTS (47) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 300 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 124 ms] (52) CpxRNTS (53) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (54) CdtProblem (55) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (56) CdtProblem (57) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (58) CdtProblem (59) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (60) CdtProblem (61) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (62) CdtProblem (63) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (64) CdtProblem (65) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (66) CdtProblem (67) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (68) CdtProblem (69) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (70) CdtProblem (71) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (72) CdtProblem (73) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 19 ms] (74) CdtProblem (75) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (76) CdtProblem (77) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (78) CdtProblem (79) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (80) CdtProblem (81) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (82) CdtProblem (83) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (84) CdtProblem (85) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (86) CdtProblem (87) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (88) CdtProblem (89) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (90) CdtProblem (91) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (92) CdtProblem (93) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (94) CdtProblem (95) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (96) CdtProblem ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(a) -> f(a) a -> b S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(b) -> b encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_a) -> a encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(a) -> f(a) a -> b The (relative) TRS S consists of the following rules: encArg(b) -> b encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_a) -> a encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(a) -> f(a) a -> b The (relative) TRS S consists of the following rules: encArg(b) -> b encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_a) -> a encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b Rewrite Strategy: FULL ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(a) -> f(a) a -> b The (relative) TRS S consists of the following rules: encArg(b) -> b encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_a) -> a encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b Rewrite Strategy: FULL ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(a) -> f(a) a -> b The (relative) TRS S consists of the following rules: encArg(b) -> b encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_a) -> a encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: f(a) -> f(a) a -> b encArg(b) -> b encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_a) -> a encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b Types: f :: b:cons_f:cons_a -> b:cons_f:cons_a a :: b:cons_f:cons_a b :: b:cons_f:cons_a encArg :: b:cons_f:cons_a -> b:cons_f:cons_a cons_f :: b:cons_f:cons_a -> b:cons_f:cons_a cons_a :: b:cons_f:cons_a encode_f :: b:cons_f:cons_a -> b:cons_f:cons_a encode_a :: b:cons_f:cons_a encode_b :: b:cons_f:cons_a hole_b:cons_f:cons_a1_0 :: b:cons_f:cons_a gen_b:cons_f:cons_a2_0 :: Nat -> b:cons_f:cons_a ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (12) Obligation: TRS: Rules: f(a) -> f(a) a -> b encArg(b) -> b encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_a) -> a encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b Types: f :: b:cons_f:cons_a -> b:cons_f:cons_a a :: b:cons_f:cons_a b :: b:cons_f:cons_a encArg :: b:cons_f:cons_a -> b:cons_f:cons_a cons_f :: b:cons_f:cons_a -> b:cons_f:cons_a cons_a :: b:cons_f:cons_a encode_f :: b:cons_f:cons_a -> b:cons_f:cons_a encode_a :: b:cons_f:cons_a encode_b :: b:cons_f:cons_a hole_b:cons_f:cons_a1_0 :: b:cons_f:cons_a gen_b:cons_f:cons_a2_0 :: Nat -> b:cons_f:cons_a Generator Equations: gen_b:cons_f:cons_a2_0(0) <=> b gen_b:cons_f:cons_a2_0(+(x, 1)) <=> cons_f(gen_b:cons_f:cons_a2_0(x)) The following defined symbols remain to be analysed: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_b:cons_f:cons_a2_0(+(1, n7_0))) -> *3_0, rt in Omega(0) Induction Base: encArg(gen_b:cons_f:cons_a2_0(+(1, 0))) Induction Step: encArg(gen_b:cons_f:cons_a2_0(+(1, +(n7_0, 1)))) ->_R^Omega(0) f(encArg(gen_b:cons_f:cons_a2_0(+(1, n7_0)))) ->_IH f(*3_0) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (14) BOUNDS(1, INF) ---------------------------------------- (15) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (16) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(a) -> f(a) a -> b encArg(b) -> b encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_a) -> a encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b S is empty. Rewrite Strategy: FULL ---------------------------------------- (17) NonCtorToCtorProof (UPPER BOUND(ID)) transformed non-ctor to ctor-system ---------------------------------------- (18) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: a -> b f(c_a) -> f(a) The (relative) TRS S consists of the following rules: encArg(b) -> b encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_a) -> a encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b a -> c_a Rewrite Strategy: FULL ---------------------------------------- (19) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS is a non-duplicating overlay system, we have rc = irc. ---------------------------------------- (20) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: a -> b f(c_a) -> f(a) The (relative) TRS S consists of the following rules: encArg(b) -> b encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_a) -> a encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b a -> c_a Rewrite Strategy: INNERMOST ---------------------------------------- (21) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (22) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: a -> b [1] f(c_a) -> f(a) [1] encArg(b) -> b [0] encArg(cons_f(x_1)) -> f(encArg(x_1)) [0] encArg(cons_a) -> a [0] encode_f(x_1) -> f(encArg(x_1)) [0] encode_a -> a [0] encode_b -> b [0] a -> c_a [0] Rewrite Strategy: INNERMOST ---------------------------------------- (23) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (24) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: a -> b [1] f(c_a) -> f(a) [1] encArg(b) -> b [0] encArg(cons_f(x_1)) -> f(encArg(x_1)) [0] encArg(cons_a) -> a [0] encode_f(x_1) -> f(encArg(x_1)) [0] encode_a -> a [0] encode_b -> b [0] a -> c_a [0] The TRS has the following type information: a :: b:c_a:cons_f:cons_a b :: b:c_a:cons_f:cons_a f :: b:c_a:cons_f:cons_a -> b:c_a:cons_f:cons_a c_a :: b:c_a:cons_f:cons_a encArg :: b:c_a:cons_f:cons_a -> b:c_a:cons_f:cons_a cons_f :: b:c_a:cons_f:cons_a -> b:c_a:cons_f:cons_a cons_a :: b:c_a:cons_f:cons_a encode_f :: b:c_a:cons_f:cons_a -> b:c_a:cons_f:cons_a encode_a :: b:c_a:cons_f:cons_a encode_b :: b:c_a:cons_f:cons_a Rewrite Strategy: INNERMOST ---------------------------------------- (25) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: encArg(v0) -> null_encArg [0] encode_f(v0) -> null_encode_f [0] encode_a -> null_encode_a [0] encode_b -> null_encode_b [0] a -> null_a [0] f(v0) -> null_f [0] And the following fresh constants: null_encArg, null_encode_f, null_encode_a, null_encode_b, null_a, null_f ---------------------------------------- (26) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: a -> b [1] f(c_a) -> f(a) [1] encArg(b) -> b [0] encArg(cons_f(x_1)) -> f(encArg(x_1)) [0] encArg(cons_a) -> a [0] encode_f(x_1) -> f(encArg(x_1)) [0] encode_a -> a [0] encode_b -> b [0] a -> c_a [0] encArg(v0) -> null_encArg [0] encode_f(v0) -> null_encode_f [0] encode_a -> null_encode_a [0] encode_b -> null_encode_b [0] a -> null_a [0] f(v0) -> null_f [0] The TRS has the following type information: a :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f b :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f f :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f -> b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f c_a :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f encArg :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f -> b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f cons_f :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f -> b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f cons_a :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f encode_f :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f -> b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f encode_a :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f encode_b :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f null_encArg :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f null_encode_f :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f null_encode_a :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f null_encode_b :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f null_a :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f null_f :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f Rewrite Strategy: INNERMOST ---------------------------------------- (27) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: b => 0 c_a => 1 cons_a => 2 null_encArg => 0 null_encode_f => 0 null_encode_a => 0 null_encode_b => 0 null_a => 0 null_f => 0 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: a -{ 0 }-> 1 :|: a -{ 1 }-> 0 :|: a -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> f(encArg(x_1)) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> a :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_a -{ 0 }-> a :|: encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(encArg(x_1)) :|: x_1 >= 0, z = x_1 encode_f(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 f(z) -{ 1 }-> f(a) :|: z = 1 f(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (29) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: f_1 encArg_1 encode_f_1 encode_a encode_b a Due to the following rules being added: encArg(v0) -> null_encArg [0] encode_f(v0) -> null_encode_f [0] encode_a -> null_encode_a [0] encode_b -> null_encode_b [0] a -> null_a [0] f(v0) -> null_f [0] And the following fresh constants: null_encArg, null_encode_f, null_encode_a, null_encode_b, null_a, null_f ---------------------------------------- (30) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: a -> b [1] f(c_a) -> f(a) [1] encArg(b) -> b [0] encArg(cons_f(x_1)) -> f(encArg(x_1)) [0] encArg(cons_a) -> a [0] encode_f(x_1) -> f(encArg(x_1)) [0] encode_a -> a [0] encode_b -> b [0] a -> c_a [0] encArg(v0) -> null_encArg [0] encode_f(v0) -> null_encode_f [0] encode_a -> null_encode_a [0] encode_b -> null_encode_b [0] a -> null_a [0] f(v0) -> null_f [0] The TRS has the following type information: a :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f b :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f f :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f -> b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f c_a :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f encArg :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f -> b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f cons_f :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f -> b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f cons_a :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f encode_f :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f -> b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f encode_a :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f encode_b :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f null_encArg :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f null_encode_f :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f null_encode_a :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f null_encode_b :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f null_a :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f null_f :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f Rewrite Strategy: INNERMOST ---------------------------------------- (31) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (32) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: a -> b [1] f(c_a) -> f(b) [2] f(c_a) -> f(c_a) [1] f(c_a) -> f(null_a) [1] encArg(b) -> b [0] encArg(cons_f(b)) -> f(b) [0] encArg(cons_f(cons_f(x_1'))) -> f(f(encArg(x_1'))) [0] encArg(cons_f(cons_a)) -> f(a) [0] encArg(cons_f(x_1)) -> f(null_encArg) [0] encArg(cons_a) -> a [0] encode_f(b) -> f(b) [0] encode_f(cons_f(x_1'')) -> f(f(encArg(x_1''))) [0] encode_f(cons_a) -> f(a) [0] encode_f(x_1) -> f(null_encArg) [0] encode_a -> a [0] encode_b -> b [0] a -> c_a [0] encArg(v0) -> null_encArg [0] encode_f(v0) -> null_encode_f [0] encode_a -> null_encode_a [0] encode_b -> null_encode_b [0] a -> null_a [0] f(v0) -> null_f [0] The TRS has the following type information: a :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f b :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f f :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f -> b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f c_a :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f encArg :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f -> b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f cons_f :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f -> b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f cons_a :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f encode_f :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f -> b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f encode_a :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f encode_b :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f null_encArg :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f null_encode_f :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f null_encode_a :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f null_encode_b :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f null_a :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f null_f :: b:c_a:cons_f:cons_a:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_a:null_f Rewrite Strategy: INNERMOST ---------------------------------------- (33) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: b => 0 c_a => 1 cons_a => 2 null_encArg => 0 null_encode_f => 0 null_encode_a => 0 null_encode_b => 0 null_a => 0 null_f => 0 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: a -{ 0 }-> 1 :|: a -{ 1 }-> 0 :|: a -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> f(f(encArg(x_1'))) :|: z = 1 + (1 + x_1'), x_1' >= 0 encArg(z) -{ 0 }-> f(a) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> a :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_a -{ 0 }-> a :|: encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(f(encArg(x_1''))) :|: z = 1 + x_1'', x_1'' >= 0 encode_f(z) -{ 0 }-> f(a) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: x_1 >= 0, z = x_1 encode_f(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 f(z) -{ 1 }-> f(1) :|: z = 1 f(z) -{ 2 }-> f(0) :|: z = 1 f(z) -{ 1 }-> f(0) :|: z = 1 f(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 ---------------------------------------- (35) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: a -{ 0 }-> 1 :|: a -{ 1 }-> 0 :|: a -{ 0 }-> 0 :|: ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: a -{ 0 }-> 1 :|: a -{ 1 }-> 0 :|: a -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> f(f(encArg(x_1'))) :|: z = 1 + (1 + x_1'), x_1' >= 0 encArg(z) -{ 0 }-> f(1) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 1 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 2 encode_a -{ 0 }-> 1 :|: encode_a -{ 0 }-> 0 :|: encode_a -{ 1 }-> 0 :|: encode_b -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(f(encArg(x_1''))) :|: z = 1 + x_1'', x_1'' >= 0 encode_f(z) -{ 0 }-> f(1) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: x_1 >= 0, z = x_1 encode_f(z) -{ 1 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 f(z) -{ 1 }-> f(1) :|: z = 1 f(z) -{ 2 }-> f(0) :|: z = 1 f(z) -{ 1 }-> f(0) :|: z = 1 f(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 ---------------------------------------- (37) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: a -{ 0 }-> 1 :|: a -{ 1 }-> 0 :|: a -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z - 1 >= 0 encArg(z) -{ 1 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 2 encode_a -{ 0 }-> 1 :|: encode_a -{ 0 }-> 0 :|: encode_a -{ 1 }-> 0 :|: encode_b -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: z >= 0 encode_f(z) -{ 1 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> f(1) :|: z = 1 f(z) -{ 2 }-> f(0) :|: z = 1 f(z) -{ 1 }-> f(0) :|: z = 1 f(z) -{ 0 }-> 0 :|: z >= 0 ---------------------------------------- (39) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { encode_a } { f } { encode_b } { a } { encArg } { encode_f } ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: a -{ 0 }-> 1 :|: a -{ 1 }-> 0 :|: a -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z - 1 >= 0 encArg(z) -{ 1 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 2 encode_a -{ 0 }-> 1 :|: encode_a -{ 0 }-> 0 :|: encode_a -{ 1 }-> 0 :|: encode_b -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: z >= 0 encode_f(z) -{ 1 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> f(1) :|: z = 1 f(z) -{ 2 }-> f(0) :|: z = 1 f(z) -{ 1 }-> f(0) :|: z = 1 f(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_a}, {f}, {encode_b}, {a}, {encArg}, {encode_f} ---------------------------------------- (41) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: a -{ 0 }-> 1 :|: a -{ 1 }-> 0 :|: a -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z - 1 >= 0 encArg(z) -{ 1 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 2 encode_a -{ 0 }-> 1 :|: encode_a -{ 0 }-> 0 :|: encode_a -{ 1 }-> 0 :|: encode_b -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: z >= 0 encode_f(z) -{ 1 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> f(1) :|: z = 1 f(z) -{ 2 }-> f(0) :|: z = 1 f(z) -{ 1 }-> f(0) :|: z = 1 f(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_a}, {f}, {encode_b}, {a}, {encArg}, {encode_f} ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_a after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: a -{ 0 }-> 1 :|: a -{ 1 }-> 0 :|: a -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z - 1 >= 0 encArg(z) -{ 1 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 2 encode_a -{ 0 }-> 1 :|: encode_a -{ 0 }-> 0 :|: encode_a -{ 1 }-> 0 :|: encode_b -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: z >= 0 encode_f(z) -{ 1 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> f(1) :|: z = 1 f(z) -{ 2 }-> f(0) :|: z = 1 f(z) -{ 1 }-> f(0) :|: z = 1 f(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_a}, {f}, {encode_b}, {a}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: ?, size: O(1) [1] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_a after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: a -{ 0 }-> 1 :|: a -{ 1 }-> 0 :|: a -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z - 1 >= 0 encArg(z) -{ 1 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 2 encode_a -{ 0 }-> 1 :|: encode_a -{ 0 }-> 0 :|: encode_a -{ 1 }-> 0 :|: encode_b -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: z >= 0 encode_f(z) -{ 1 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> f(1) :|: z = 1 f(z) -{ 2 }-> f(0) :|: z = 1 f(z) -{ 1 }-> f(0) :|: z = 1 f(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {f}, {encode_b}, {a}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (47) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: a -{ 0 }-> 1 :|: a -{ 1 }-> 0 :|: a -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z - 1 >= 0 encArg(z) -{ 1 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 2 encode_a -{ 0 }-> 1 :|: encode_a -{ 0 }-> 0 :|: encode_a -{ 1 }-> 0 :|: encode_b -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: z >= 0 encode_f(z) -{ 1 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> f(1) :|: z = 1 f(z) -{ 2 }-> f(0) :|: z = 1 f(z) -{ 1 }-> f(0) :|: z = 1 f(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {f}, {encode_b}, {a}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: a -{ 0 }-> 1 :|: a -{ 1 }-> 0 :|: a -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z - 1 >= 0 encArg(z) -{ 1 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 2 encode_a -{ 0 }-> 1 :|: encode_a -{ 0 }-> 0 :|: encode_a -{ 1 }-> 0 :|: encode_b -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: z >= 0 encode_f(z) -{ 1 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> f(1) :|: z = 1 f(z) -{ 2 }-> f(0) :|: z = 1 f(z) -{ 1 }-> f(0) :|: z = 1 f(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {f}, {encode_b}, {a}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [1], size: O(1) [1] f: runtime: ?, size: O(1) [0] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: a -{ 0 }-> 1 :|: a -{ 1 }-> 0 :|: a -{ 0 }-> 0 :|: encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z - 1 >= 0 encArg(z) -{ 1 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 2 encArg(z) -{ 0 }-> 1 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 2 encode_a -{ 0 }-> 1 :|: encode_a -{ 0 }-> 0 :|: encode_a -{ 1 }-> 0 :|: encode_b -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: z >= 0 encode_f(z) -{ 1 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> f(0) :|: z = 2 encode_f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> f(1) :|: z = 1 f(z) -{ 2 }-> f(0) :|: z = 1 f(z) -{ 1 }-> f(0) :|: z = 1 f(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {f}, {encode_b}, {a}, {encArg}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [1], size: O(1) [1] f: runtime: INF, size: O(1) [0] ---------------------------------------- (53) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (54) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_b -> b a -> c_a a -> b f(c_a) -> f(a) Tuples: ENCARG(b) -> c ENCARG(cons_f(z0)) -> c1(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c2(A) ENCODE_F(z0) -> c3(F(encArg(z0)), ENCARG(z0)) ENCODE_A -> c4(A) ENCODE_B -> c5 A -> c6 A -> c7 F(c_a) -> c8(F(a), A) S tuples: A -> c7 F(c_a) -> c8(F(a), A) K tuples:none Defined Rule Symbols: a, f_1, encArg_1, encode_f_1, encode_a, encode_b Defined Pair Symbols: ENCARG_1, ENCODE_F_1, ENCODE_A, ENCODE_B, A, F_1 Compound Symbols: c, c1_2, c2_1, c3_2, c4_1, c5, c6, c7, c8_2 ---------------------------------------- (55) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: ENCODE_A -> c4(A) Removed 3 trailing nodes: ENCARG(b) -> c A -> c6 ENCODE_B -> c5 ---------------------------------------- (56) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_b -> b a -> c_a a -> b f(c_a) -> f(a) Tuples: ENCARG(cons_f(z0)) -> c1(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c2(A) ENCODE_F(z0) -> c3(F(encArg(z0)), ENCARG(z0)) A -> c7 F(c_a) -> c8(F(a), A) S tuples: A -> c7 F(c_a) -> c8(F(a), A) K tuples:none Defined Rule Symbols: a, f_1, encArg_1, encode_f_1, encode_a, encode_b Defined Pair Symbols: ENCARG_1, ENCODE_F_1, A, F_1 Compound Symbols: c1_2, c2_1, c3_2, c7, c8_2 ---------------------------------------- (57) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (58) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_b -> b a -> c_a a -> b f(c_a) -> f(a) Tuples: ENCARG(cons_f(z0)) -> c1(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c2(A) A -> c7 F(c_a) -> c8(F(a), A) ENCODE_F(z0) -> c(F(encArg(z0))) ENCODE_F(z0) -> c(ENCARG(z0)) S tuples: A -> c7 F(c_a) -> c8(F(a), A) K tuples:none Defined Rule Symbols: a, f_1, encArg_1, encode_f_1, encode_a, encode_b Defined Pair Symbols: ENCARG_1, A, F_1, ENCODE_F_1 Compound Symbols: c1_2, c2_1, c7, c8_2, c_1 ---------------------------------------- (59) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: ENCODE_F(z0) -> c(ENCARG(z0)) ---------------------------------------- (60) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_b -> b a -> c_a a -> b f(c_a) -> f(a) Tuples: ENCARG(cons_f(z0)) -> c1(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c2(A) A -> c7 F(c_a) -> c8(F(a), A) ENCODE_F(z0) -> c(F(encArg(z0))) S tuples: A -> c7 F(c_a) -> c8(F(a), A) K tuples:none Defined Rule Symbols: a, f_1, encArg_1, encode_f_1, encode_a, encode_b Defined Pair Symbols: ENCARG_1, A, F_1, ENCODE_F_1 Compound Symbols: c1_2, c2_1, c7, c8_2, c_1 ---------------------------------------- (61) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_b -> b ---------------------------------------- (62) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a f(c_a) -> f(a) a -> c_a a -> b Tuples: ENCARG(cons_f(z0)) -> c1(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c2(A) A -> c7 F(c_a) -> c8(F(a), A) ENCODE_F(z0) -> c(F(encArg(z0))) S tuples: A -> c7 F(c_a) -> c8(F(a), A) K tuples:none Defined Rule Symbols: encArg_1, f_1, a Defined Pair Symbols: ENCARG_1, A, F_1, ENCODE_F_1 Compound Symbols: c1_2, c2_1, c7, c8_2, c_1 ---------------------------------------- (63) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCARG(cons_f(z0)) -> c1(F(encArg(z0)), ENCARG(z0)) by ENCARG(cons_f(b)) -> c1(F(b), ENCARG(b)) ENCARG(cons_f(cons_f(z0))) -> c1(F(f(encArg(z0))), ENCARG(cons_f(z0))) ENCARG(cons_f(cons_a)) -> c1(F(a), ENCARG(cons_a)) ---------------------------------------- (64) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a f(c_a) -> f(a) a -> c_a a -> b Tuples: ENCARG(cons_a) -> c2(A) A -> c7 F(c_a) -> c8(F(a), A) ENCODE_F(z0) -> c(F(encArg(z0))) ENCARG(cons_f(b)) -> c1(F(b), ENCARG(b)) ENCARG(cons_f(cons_f(z0))) -> c1(F(f(encArg(z0))), ENCARG(cons_f(z0))) ENCARG(cons_f(cons_a)) -> c1(F(a), ENCARG(cons_a)) S tuples: A -> c7 F(c_a) -> c8(F(a), A) K tuples:none Defined Rule Symbols: encArg_1, f_1, a Defined Pair Symbols: ENCARG_1, A, F_1, ENCODE_F_1 Compound Symbols: c2_1, c7, c8_2, c_1, c1_2 ---------------------------------------- (65) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: ENCARG(cons_f(b)) -> c1(F(b), ENCARG(b)) ---------------------------------------- (66) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a f(c_a) -> f(a) a -> c_a a -> b Tuples: ENCARG(cons_a) -> c2(A) A -> c7 F(c_a) -> c8(F(a), A) ENCODE_F(z0) -> c(F(encArg(z0))) ENCARG(cons_f(cons_f(z0))) -> c1(F(f(encArg(z0))), ENCARG(cons_f(z0))) ENCARG(cons_f(cons_a)) -> c1(F(a), ENCARG(cons_a)) S tuples: A -> c7 F(c_a) -> c8(F(a), A) K tuples:none Defined Rule Symbols: encArg_1, f_1, a Defined Pair Symbols: ENCARG_1, A, F_1, ENCODE_F_1 Compound Symbols: c2_1, c7, c8_2, c_1, c1_2 ---------------------------------------- (67) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (68) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a f(c_a) -> f(a) a -> c_a a -> b Tuples: ENCARG(cons_a) -> c2(A) A -> c7 F(c_a) -> c8(F(a), A) ENCODE_F(z0) -> c(F(encArg(z0))) ENCARG(cons_f(cons_f(z0))) -> c1(F(f(encArg(z0))), ENCARG(cons_f(z0))) ENCARG(cons_f(cons_a)) -> c3(F(a)) ENCARG(cons_f(cons_a)) -> c3(ENCARG(cons_a)) S tuples: A -> c7 F(c_a) -> c8(F(a), A) K tuples:none Defined Rule Symbols: encArg_1, f_1, a Defined Pair Symbols: ENCARG_1, A, F_1, ENCODE_F_1 Compound Symbols: c2_1, c7, c8_2, c_1, c1_2, c3_1 ---------------------------------------- (69) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace F(c_a) -> c8(F(a), A) by F(c_a) -> c8(F(c_a), A) F(c_a) -> c8(F(b), A) ---------------------------------------- (70) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a f(c_a) -> f(a) a -> c_a a -> b Tuples: ENCARG(cons_a) -> c2(A) A -> c7 ENCODE_F(z0) -> c(F(encArg(z0))) ENCARG(cons_f(cons_f(z0))) -> c1(F(f(encArg(z0))), ENCARG(cons_f(z0))) ENCARG(cons_f(cons_a)) -> c3(F(a)) ENCARG(cons_f(cons_a)) -> c3(ENCARG(cons_a)) F(c_a) -> c8(F(c_a), A) F(c_a) -> c8(F(b), A) S tuples: A -> c7 F(c_a) -> c8(F(c_a), A) F(c_a) -> c8(F(b), A) K tuples:none Defined Rule Symbols: encArg_1, f_1, a Defined Pair Symbols: ENCARG_1, A, ENCODE_F_1, F_1 Compound Symbols: c2_1, c7, c_1, c1_2, c3_1, c8_2 ---------------------------------------- (71) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (72) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a f(c_a) -> f(a) a -> c_a a -> b Tuples: ENCARG(cons_a) -> c2(A) A -> c7 ENCODE_F(z0) -> c(F(encArg(z0))) ENCARG(cons_f(cons_f(z0))) -> c1(F(f(encArg(z0))), ENCARG(cons_f(z0))) ENCARG(cons_f(cons_a)) -> c3(F(a)) ENCARG(cons_f(cons_a)) -> c3(ENCARG(cons_a)) F(c_a) -> c8(F(c_a), A) F(c_a) -> c8(A) S tuples: A -> c7 F(c_a) -> c8(F(c_a), A) F(c_a) -> c8(A) K tuples:none Defined Rule Symbols: encArg_1, f_1, a Defined Pair Symbols: ENCARG_1, A, ENCODE_F_1, F_1 Compound Symbols: c2_1, c7, c_1, c1_2, c3_1, c8_2, c8_1 ---------------------------------------- (73) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(c_a) -> c8(A) We considered the (Usable) Rules:none And the Tuples: ENCARG(cons_a) -> c2(A) A -> c7 ENCODE_F(z0) -> c(F(encArg(z0))) ENCARG(cons_f(cons_f(z0))) -> c1(F(f(encArg(z0))), ENCARG(cons_f(z0))) ENCARG(cons_f(cons_a)) -> c3(F(a)) ENCARG(cons_f(cons_a)) -> c3(ENCARG(cons_a)) F(c_a) -> c8(F(c_a), A) F(c_a) -> c8(A) The order we found is given by the following interpretation: Polynomial interpretation : POL(A) = 0 POL(ENCARG(x_1)) = [2] + x_1 POL(ENCODE_F(x_1)) = [1] + x_1 POL(F(x_1)) = [1] POL(a) = [2] POL(b) = [3] POL(c(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c2(x_1)) = x_1 POL(c3(x_1)) = x_1 POL(c7) = 0 POL(c8(x_1)) = x_1 POL(c8(x_1, x_2)) = x_1 + x_2 POL(c_a) = [3] POL(cons_a) = [2] POL(cons_f(x_1)) = [2] + x_1 POL(encArg(x_1)) = [3] POL(f(x_1)) = [3] + [3]x_1 ---------------------------------------- (74) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a f(c_a) -> f(a) a -> c_a a -> b Tuples: ENCARG(cons_a) -> c2(A) A -> c7 ENCODE_F(z0) -> c(F(encArg(z0))) ENCARG(cons_f(cons_f(z0))) -> c1(F(f(encArg(z0))), ENCARG(cons_f(z0))) ENCARG(cons_f(cons_a)) -> c3(F(a)) ENCARG(cons_f(cons_a)) -> c3(ENCARG(cons_a)) F(c_a) -> c8(F(c_a), A) F(c_a) -> c8(A) S tuples: A -> c7 F(c_a) -> c8(F(c_a), A) K tuples: F(c_a) -> c8(A) Defined Rule Symbols: encArg_1, f_1, a Defined Pair Symbols: ENCARG_1, A, ENCODE_F_1, F_1 Compound Symbols: c2_1, c7, c_1, c1_2, c3_1, c8_2, c8_1 ---------------------------------------- (75) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCODE_F(z0) -> c(F(encArg(z0))) by ENCODE_F(b) -> c(F(b)) ENCODE_F(cons_f(z0)) -> c(F(f(encArg(z0)))) ENCODE_F(cons_a) -> c(F(a)) ---------------------------------------- (76) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a f(c_a) -> f(a) a -> c_a a -> b Tuples: ENCARG(cons_a) -> c2(A) A -> c7 ENCARG(cons_f(cons_f(z0))) -> c1(F(f(encArg(z0))), ENCARG(cons_f(z0))) ENCARG(cons_f(cons_a)) -> c3(F(a)) ENCARG(cons_f(cons_a)) -> c3(ENCARG(cons_a)) F(c_a) -> c8(F(c_a), A) F(c_a) -> c8(A) ENCODE_F(b) -> c(F(b)) ENCODE_F(cons_f(z0)) -> c(F(f(encArg(z0)))) ENCODE_F(cons_a) -> c(F(a)) S tuples: A -> c7 F(c_a) -> c8(F(c_a), A) K tuples: F(c_a) -> c8(A) Defined Rule Symbols: encArg_1, f_1, a Defined Pair Symbols: ENCARG_1, A, F_1, ENCODE_F_1 Compound Symbols: c2_1, c7, c1_2, c3_1, c8_2, c8_1, c_1 ---------------------------------------- (77) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: ENCODE_F(b) -> c(F(b)) ---------------------------------------- (78) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a f(c_a) -> f(a) a -> c_a a -> b Tuples: ENCARG(cons_a) -> c2(A) A -> c7 ENCARG(cons_f(cons_f(z0))) -> c1(F(f(encArg(z0))), ENCARG(cons_f(z0))) ENCARG(cons_f(cons_a)) -> c3(F(a)) ENCARG(cons_f(cons_a)) -> c3(ENCARG(cons_a)) F(c_a) -> c8(F(c_a), A) F(c_a) -> c8(A) ENCODE_F(cons_f(z0)) -> c(F(f(encArg(z0)))) ENCODE_F(cons_a) -> c(F(a)) S tuples: A -> c7 F(c_a) -> c8(F(c_a), A) K tuples: F(c_a) -> c8(A) Defined Rule Symbols: encArg_1, f_1, a Defined Pair Symbols: ENCARG_1, A, F_1, ENCODE_F_1 Compound Symbols: c2_1, c7, c1_2, c3_1, c8_2, c8_1, c_1 ---------------------------------------- (79) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCARG(cons_f(cons_f(z0))) -> c1(F(f(encArg(z0))), ENCARG(cons_f(z0))) by ENCARG(cons_f(cons_f(b))) -> c1(F(f(b)), ENCARG(cons_f(b))) ENCARG(cons_f(cons_f(cons_f(z0)))) -> c1(F(f(f(encArg(z0)))), ENCARG(cons_f(cons_f(z0)))) ENCARG(cons_f(cons_f(cons_a))) -> c1(F(f(a)), ENCARG(cons_f(cons_a))) ---------------------------------------- (80) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a f(c_a) -> f(a) a -> c_a a -> b Tuples: ENCARG(cons_a) -> c2(A) A -> c7 ENCARG(cons_f(cons_a)) -> c3(F(a)) ENCARG(cons_f(cons_a)) -> c3(ENCARG(cons_a)) F(c_a) -> c8(F(c_a), A) F(c_a) -> c8(A) ENCODE_F(cons_f(z0)) -> c(F(f(encArg(z0)))) ENCODE_F(cons_a) -> c(F(a)) ENCARG(cons_f(cons_f(b))) -> c1(F(f(b)), ENCARG(cons_f(b))) ENCARG(cons_f(cons_f(cons_f(z0)))) -> c1(F(f(f(encArg(z0)))), ENCARG(cons_f(cons_f(z0)))) ENCARG(cons_f(cons_f(cons_a))) -> c1(F(f(a)), ENCARG(cons_f(cons_a))) S tuples: A -> c7 F(c_a) -> c8(F(c_a), A) K tuples: F(c_a) -> c8(A) Defined Rule Symbols: encArg_1, f_1, a Defined Pair Symbols: ENCARG_1, A, F_1, ENCODE_F_1 Compound Symbols: c2_1, c7, c3_1, c8_2, c8_1, c_1, c1_2 ---------------------------------------- (81) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: ENCARG(cons_f(cons_f(b))) -> c1(F(f(b)), ENCARG(cons_f(b))) ---------------------------------------- (82) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a f(c_a) -> f(a) a -> c_a a -> b Tuples: ENCARG(cons_a) -> c2(A) A -> c7 ENCARG(cons_f(cons_a)) -> c3(F(a)) ENCARG(cons_f(cons_a)) -> c3(ENCARG(cons_a)) F(c_a) -> c8(F(c_a), A) F(c_a) -> c8(A) ENCODE_F(cons_f(z0)) -> c(F(f(encArg(z0)))) ENCODE_F(cons_a) -> c(F(a)) ENCARG(cons_f(cons_f(cons_f(z0)))) -> c1(F(f(f(encArg(z0)))), ENCARG(cons_f(cons_f(z0)))) ENCARG(cons_f(cons_f(cons_a))) -> c1(F(f(a)), ENCARG(cons_f(cons_a))) S tuples: A -> c7 F(c_a) -> c8(F(c_a), A) K tuples: F(c_a) -> c8(A) Defined Rule Symbols: encArg_1, f_1, a Defined Pair Symbols: ENCARG_1, A, F_1, ENCODE_F_1 Compound Symbols: c2_1, c7, c3_1, c8_2, c8_1, c_1, c1_2 ---------------------------------------- (83) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (84) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a f(c_a) -> f(a) a -> c_a a -> b Tuples: ENCARG(cons_a) -> c2(A) A -> c7 ENCARG(cons_f(cons_a)) -> c3(F(a)) ENCARG(cons_f(cons_a)) -> c3(ENCARG(cons_a)) F(c_a) -> c8(F(c_a), A) F(c_a) -> c8(A) ENCODE_F(cons_f(z0)) -> c(F(f(encArg(z0)))) ENCODE_F(cons_a) -> c(F(a)) ENCARG(cons_f(cons_f(cons_f(z0)))) -> c1(F(f(f(encArg(z0)))), ENCARG(cons_f(cons_f(z0)))) ENCARG(cons_f(cons_f(cons_a))) -> c4(F(f(a))) ENCARG(cons_f(cons_f(cons_a))) -> c4(ENCARG(cons_f(cons_a))) S tuples: A -> c7 F(c_a) -> c8(F(c_a), A) K tuples: F(c_a) -> c8(A) Defined Rule Symbols: encArg_1, f_1, a Defined Pair Symbols: ENCARG_1, A, F_1, ENCODE_F_1 Compound Symbols: c2_1, c7, c3_1, c8_2, c8_1, c_1, c1_2, c4_1 ---------------------------------------- (85) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCARG(cons_f(cons_a)) -> c3(F(a)) by ENCARG(cons_f(cons_a)) -> c3(F(c_a)) ENCARG(cons_f(cons_a)) -> c3(F(b)) ---------------------------------------- (86) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a f(c_a) -> f(a) a -> c_a a -> b Tuples: ENCARG(cons_a) -> c2(A) A -> c7 ENCARG(cons_f(cons_a)) -> c3(ENCARG(cons_a)) F(c_a) -> c8(F(c_a), A) F(c_a) -> c8(A) ENCODE_F(cons_f(z0)) -> c(F(f(encArg(z0)))) ENCODE_F(cons_a) -> c(F(a)) ENCARG(cons_f(cons_f(cons_f(z0)))) -> c1(F(f(f(encArg(z0)))), ENCARG(cons_f(cons_f(z0)))) ENCARG(cons_f(cons_f(cons_a))) -> c4(F(f(a))) ENCARG(cons_f(cons_f(cons_a))) -> c4(ENCARG(cons_f(cons_a))) ENCARG(cons_f(cons_a)) -> c3(F(c_a)) ENCARG(cons_f(cons_a)) -> c3(F(b)) S tuples: A -> c7 F(c_a) -> c8(F(c_a), A) K tuples: F(c_a) -> c8(A) Defined Rule Symbols: encArg_1, f_1, a Defined Pair Symbols: ENCARG_1, A, F_1, ENCODE_F_1 Compound Symbols: c2_1, c7, c3_1, c8_2, c8_1, c_1, c1_2, c4_1 ---------------------------------------- (87) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: ENCARG(cons_f(cons_a)) -> c3(F(b)) ---------------------------------------- (88) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a f(c_a) -> f(a) a -> c_a a -> b Tuples: ENCARG(cons_a) -> c2(A) A -> c7 ENCARG(cons_f(cons_a)) -> c3(ENCARG(cons_a)) F(c_a) -> c8(F(c_a), A) F(c_a) -> c8(A) ENCODE_F(cons_f(z0)) -> c(F(f(encArg(z0)))) ENCODE_F(cons_a) -> c(F(a)) ENCARG(cons_f(cons_f(cons_f(z0)))) -> c1(F(f(f(encArg(z0)))), ENCARG(cons_f(cons_f(z0)))) ENCARG(cons_f(cons_f(cons_a))) -> c4(F(f(a))) ENCARG(cons_f(cons_f(cons_a))) -> c4(ENCARG(cons_f(cons_a))) ENCARG(cons_f(cons_a)) -> c3(F(c_a)) S tuples: A -> c7 F(c_a) -> c8(F(c_a), A) K tuples: F(c_a) -> c8(A) Defined Rule Symbols: encArg_1, f_1, a Defined Pair Symbols: ENCARG_1, A, F_1, ENCODE_F_1 Compound Symbols: c2_1, c7, c3_1, c8_2, c8_1, c_1, c1_2, c4_1 ---------------------------------------- (89) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCODE_F(cons_f(z0)) -> c(F(f(encArg(z0)))) by ENCODE_F(cons_f(b)) -> c(F(f(b))) ENCODE_F(cons_f(cons_f(z0))) -> c(F(f(f(encArg(z0))))) ENCODE_F(cons_f(cons_a)) -> c(F(f(a))) ---------------------------------------- (90) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a f(c_a) -> f(a) a -> c_a a -> b Tuples: ENCARG(cons_a) -> c2(A) A -> c7 ENCARG(cons_f(cons_a)) -> c3(ENCARG(cons_a)) F(c_a) -> c8(F(c_a), A) F(c_a) -> c8(A) ENCODE_F(cons_a) -> c(F(a)) ENCARG(cons_f(cons_f(cons_f(z0)))) -> c1(F(f(f(encArg(z0)))), ENCARG(cons_f(cons_f(z0)))) ENCARG(cons_f(cons_f(cons_a))) -> c4(F(f(a))) ENCARG(cons_f(cons_f(cons_a))) -> c4(ENCARG(cons_f(cons_a))) ENCARG(cons_f(cons_a)) -> c3(F(c_a)) ENCODE_F(cons_f(b)) -> c(F(f(b))) ENCODE_F(cons_f(cons_f(z0))) -> c(F(f(f(encArg(z0))))) ENCODE_F(cons_f(cons_a)) -> c(F(f(a))) S tuples: A -> c7 F(c_a) -> c8(F(c_a), A) K tuples: F(c_a) -> c8(A) Defined Rule Symbols: encArg_1, f_1, a Defined Pair Symbols: ENCARG_1, A, F_1, ENCODE_F_1 Compound Symbols: c2_1, c7, c3_1, c8_2, c8_1, c_1, c1_2, c4_1 ---------------------------------------- (91) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: ENCODE_F(cons_f(b)) -> c(F(f(b))) ---------------------------------------- (92) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a f(c_a) -> f(a) a -> c_a a -> b Tuples: ENCARG(cons_a) -> c2(A) A -> c7 ENCARG(cons_f(cons_a)) -> c3(ENCARG(cons_a)) F(c_a) -> c8(F(c_a), A) F(c_a) -> c8(A) ENCODE_F(cons_a) -> c(F(a)) ENCARG(cons_f(cons_f(cons_f(z0)))) -> c1(F(f(f(encArg(z0)))), ENCARG(cons_f(cons_f(z0)))) ENCARG(cons_f(cons_f(cons_a))) -> c4(F(f(a))) ENCARG(cons_f(cons_f(cons_a))) -> c4(ENCARG(cons_f(cons_a))) ENCARG(cons_f(cons_a)) -> c3(F(c_a)) ENCODE_F(cons_f(cons_f(z0))) -> c(F(f(f(encArg(z0))))) ENCODE_F(cons_f(cons_a)) -> c(F(f(a))) S tuples: A -> c7 F(c_a) -> c8(F(c_a), A) K tuples: F(c_a) -> c8(A) Defined Rule Symbols: encArg_1, f_1, a Defined Pair Symbols: ENCARG_1, A, F_1, ENCODE_F_1 Compound Symbols: c2_1, c7, c3_1, c8_2, c8_1, c_1, c1_2, c4_1 ---------------------------------------- (93) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCODE_F(cons_a) -> c(F(a)) by ENCODE_F(cons_a) -> c(F(c_a)) ENCODE_F(cons_a) -> c(F(b)) ---------------------------------------- (94) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a f(c_a) -> f(a) a -> c_a a -> b Tuples: ENCARG(cons_a) -> c2(A) A -> c7 ENCARG(cons_f(cons_a)) -> c3(ENCARG(cons_a)) F(c_a) -> c8(F(c_a), A) F(c_a) -> c8(A) ENCARG(cons_f(cons_f(cons_f(z0)))) -> c1(F(f(f(encArg(z0)))), ENCARG(cons_f(cons_f(z0)))) ENCARG(cons_f(cons_f(cons_a))) -> c4(F(f(a))) ENCARG(cons_f(cons_f(cons_a))) -> c4(ENCARG(cons_f(cons_a))) ENCARG(cons_f(cons_a)) -> c3(F(c_a)) ENCODE_F(cons_f(cons_f(z0))) -> c(F(f(f(encArg(z0))))) ENCODE_F(cons_f(cons_a)) -> c(F(f(a))) ENCODE_F(cons_a) -> c(F(c_a)) ENCODE_F(cons_a) -> c(F(b)) S tuples: A -> c7 F(c_a) -> c8(F(c_a), A) K tuples: F(c_a) -> c8(A) Defined Rule Symbols: encArg_1, f_1, a Defined Pair Symbols: ENCARG_1, A, F_1, ENCODE_F_1 Compound Symbols: c2_1, c7, c3_1, c8_2, c8_1, c1_2, c4_1, c_1 ---------------------------------------- (95) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: ENCODE_F(cons_a) -> c(F(c_a)) Removed 1 trailing nodes: ENCODE_F(cons_a) -> c(F(b)) ---------------------------------------- (96) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a f(c_a) -> f(a) a -> c_a a -> b Tuples: ENCARG(cons_a) -> c2(A) A -> c7 ENCARG(cons_f(cons_a)) -> c3(ENCARG(cons_a)) F(c_a) -> c8(F(c_a), A) F(c_a) -> c8(A) ENCARG(cons_f(cons_f(cons_f(z0)))) -> c1(F(f(f(encArg(z0)))), ENCARG(cons_f(cons_f(z0)))) ENCARG(cons_f(cons_f(cons_a))) -> c4(F(f(a))) ENCARG(cons_f(cons_f(cons_a))) -> c4(ENCARG(cons_f(cons_a))) ENCARG(cons_f(cons_a)) -> c3(F(c_a)) ENCODE_F(cons_f(cons_f(z0))) -> c(F(f(f(encArg(z0))))) ENCODE_F(cons_f(cons_a)) -> c(F(f(a))) S tuples: A -> c7 F(c_a) -> c8(F(c_a), A) K tuples: F(c_a) -> c8(A) Defined Rule Symbols: encArg_1, f_1, a Defined Pair Symbols: ENCARG_1, A, F_1, ENCODE_F_1 Compound Symbols: c2_1, c7, c3_1, c8_2, c8_1, c1_2, c4_1, c_1