/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(EXP, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 64 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [FINISHED, 478 ms] (12) BOUNDS(EXP, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: f(s(x)) -> s(f(f(p(s(x))))) f(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_0 -> 0 ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: f(s(x)) -> s(f(f(p(s(x))))) f(0) -> 0 p(s(x)) -> x The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_0 -> 0 Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: f(s(x)) -> s(f(f(p(s(x))))) f(0) -> 0 p(s(x)) -> x The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_0 -> 0 Rewrite Strategy: FULL ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: f(s(x)) -> s(f(f(p(s(x))))) f(0') -> 0' p(s(x)) -> x The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_0 -> 0' Rewrite Strategy: FULL ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: TRS: Rules: f(s(x)) -> s(f(f(p(s(x))))) f(0') -> 0' p(s(x)) -> x encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_0 -> 0' Types: f :: s:0':cons_f:cons_p -> s:0':cons_f:cons_p s :: s:0':cons_f:cons_p -> s:0':cons_f:cons_p p :: s:0':cons_f:cons_p -> s:0':cons_f:cons_p 0' :: s:0':cons_f:cons_p encArg :: s:0':cons_f:cons_p -> s:0':cons_f:cons_p cons_f :: s:0':cons_f:cons_p -> s:0':cons_f:cons_p cons_p :: s:0':cons_f:cons_p -> s:0':cons_f:cons_p encode_f :: s:0':cons_f:cons_p -> s:0':cons_f:cons_p encode_s :: s:0':cons_f:cons_p -> s:0':cons_f:cons_p encode_p :: s:0':cons_f:cons_p -> s:0':cons_f:cons_p encode_0 :: s:0':cons_f:cons_p hole_s:0':cons_f:cons_p1_2 :: s:0':cons_f:cons_p gen_s:0':cons_f:cons_p2_2 :: Nat -> s:0':cons_f:cons_p ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (10) Obligation: TRS: Rules: f(s(x)) -> s(f(f(p(s(x))))) f(0') -> 0' p(s(x)) -> x encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_0 -> 0' Types: f :: s:0':cons_f:cons_p -> s:0':cons_f:cons_p s :: s:0':cons_f:cons_p -> s:0':cons_f:cons_p p :: s:0':cons_f:cons_p -> s:0':cons_f:cons_p 0' :: s:0':cons_f:cons_p encArg :: s:0':cons_f:cons_p -> s:0':cons_f:cons_p cons_f :: s:0':cons_f:cons_p -> s:0':cons_f:cons_p cons_p :: s:0':cons_f:cons_p -> s:0':cons_f:cons_p encode_f :: s:0':cons_f:cons_p -> s:0':cons_f:cons_p encode_s :: s:0':cons_f:cons_p -> s:0':cons_f:cons_p encode_p :: s:0':cons_f:cons_p -> s:0':cons_f:cons_p encode_0 :: s:0':cons_f:cons_p hole_s:0':cons_f:cons_p1_2 :: s:0':cons_f:cons_p gen_s:0':cons_f:cons_p2_2 :: Nat -> s:0':cons_f:cons_p Generator Equations: gen_s:0':cons_f:cons_p2_2(0) <=> 0' gen_s:0':cons_f:cons_p2_2(+(x, 1)) <=> s(gen_s:0':cons_f:cons_p2_2(x)) The following defined symbols remain to be analysed: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (11) RewriteLemmaProof (FINISHED) Proved the following rewrite lemma: f(gen_s:0':cons_f:cons_p2_2(n4_2)) -> gen_s:0':cons_f:cons_p2_2(n4_2), rt in Omega(EXP) Induction Base: f(gen_s:0':cons_f:cons_p2_2(0)) ->_R^Omega(1) 0' Induction Step: f(gen_s:0':cons_f:cons_p2_2(+(n4_2, 1))) ->_R^Omega(1) s(f(f(p(s(gen_s:0':cons_f:cons_p2_2(n4_2)))))) ->_R^Omega(1) s(f(f(gen_s:0':cons_f:cons_p2_2(n4_2)))) ->_IH s(f(gen_s:0':cons_f:cons_p2_2(c5_2))) ->_IH s(gen_s:0':cons_f:cons_p2_2(c5_2)) We have rt in EXP and sz in O(n). Thus, we have irc_R in EXP ---------------------------------------- (12) BOUNDS(EXP, INF)