/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^3)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^3). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 174 ms] (4) CpxRelTRS (5) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] (6) CpxRelTRS (7) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (10) CdtProblem (11) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (12) CdtProblem (13) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CdtProblem (17) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (18) CdtProblem (19) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CdtProblem (21) CdtRuleRemovalProof [UPPER BOUND(ADD(n^3)), 698 ms] (22) CdtProblem (23) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 86 ms] (24) CdtProblem (25) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (26) BOUNDS(1, 1) (27) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (28) CpxRelTRS (29) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (30) typed CpxTrs (31) OrderProof [LOWER BOUND(ID), 0 ms] (32) typed CpxTrs (33) RewriteLemmaProof [LOWER BOUND(ID), 564 ms] (34) BEST (35) proven lower bound (36) LowerBoundPropagationProof [FINISHED, 0 ms] (37) BOUNDS(n^1, INF) (38) typed CpxTrs (39) RewriteLemmaProof [LOWER BOUND(ID), 10 ms] (40) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: +(*(x, y), *(x, z)) -> *(x, +(y, z)) +(+(x, y), z) -> +(x, +(y, z)) +(*(x, y), +(*(x, z), u)) -> +(*(x, +(y, z)), u) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(u) -> u encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_u -> u ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: +(*(x, y), *(x, z)) -> *(x, +(y, z)) +(+(x, y), z) -> +(x, +(y, z)) +(*(x, y), +(*(x, z), u)) -> +(*(x, +(y, z)), u) The (relative) TRS S consists of the following rules: encArg(*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(u) -> u encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_u -> u Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: +(*(x, y), *(x, z)) -> *(x, +(y, z)) +(+(x, y), z) -> +(x, +(y, z)) +(*(x, y), +(*(x, z), u)) -> +(*(x, +(y, z)), u) The (relative) TRS S consists of the following rules: encArg(*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(u) -> u encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_u -> u Rewrite Strategy: FULL ---------------------------------------- (5) NonCtorToCtorProof (UPPER BOUND(ID)) transformed non-ctor to ctor-system ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: +(*(x, y), *(x, z)) -> *(x, +(y, z)) +(c_+(x, y), z) -> +(x, +(y, z)) +(*(x, y), c_+(*(x, z), u)) -> +(*(x, +(y, z)), u) The (relative) TRS S consists of the following rules: encArg(*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(u) -> u encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_u -> u +(x0, x1) -> c_+(x0, x1) Rewrite Strategy: FULL ---------------------------------------- (7) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS is a non-duplicating overlay system, we have rc = irc. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: +(*(x, y), *(x, z)) -> *(x, +(y, z)) +(c_+(x, y), z) -> +(x, +(y, z)) +(*(x, y), c_+(*(x, z), u)) -> +(*(x, +(y, z)), u) The (relative) TRS S consists of the following rules: encArg(*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(u) -> u encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_u -> u +(x0, x1) -> c_+(x0, x1) Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(*(z0, z1)) -> *(encArg(z0), encArg(z1)) encArg(u) -> u encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) encode_+(z0, z1) -> +(encArg(z0), encArg(z1)) encode_*(z0, z1) -> *(encArg(z0), encArg(z1)) encode_u -> u +(z0, z1) -> c_+(z0, z1) +(*(z0, z1), *(z0, z2)) -> *(z0, +(z1, z2)) +(c_+(z0, z1), z2) -> +(z0, +(z1, z2)) +(*(z0, z1), c_+(*(z0, z2), u)) -> +(*(z0, +(z1, z2)), u) Tuples: ENCARG(*(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(u) -> c1 ENCARG(cons_+(z0, z1)) -> c2(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_+(z0, z1) -> c3(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_*(z0, z1) -> c4(ENCARG(z0), ENCARG(z1)) ENCODE_U -> c5 +'(z0, z1) -> c6 +'(*(z0, z1), *(z0, z2)) -> c7(+'(z1, z2)) +'(c_+(z0, z1), z2) -> c8(+'(z0, +(z1, z2)), +'(z1, z2)) +'(*(z0, z1), c_+(*(z0, z2), u)) -> c9(+'(*(z0, +(z1, z2)), u), +'(z1, z2)) S tuples: +'(*(z0, z1), *(z0, z2)) -> c7(+'(z1, z2)) +'(c_+(z0, z1), z2) -> c8(+'(z0, +(z1, z2)), +'(z1, z2)) +'(*(z0, z1), c_+(*(z0, z2), u)) -> c9(+'(*(z0, +(z1, z2)), u), +'(z1, z2)) K tuples:none Defined Rule Symbols: +_2, encArg_1, encode_+_2, encode_*_2, encode_u Defined Pair Symbols: ENCARG_1, ENCODE_+_2, ENCODE_*_2, ENCODE_U, +'_2 Compound Symbols: c_2, c1, c2_3, c3_3, c4_2, c5, c6, c7_1, c8_2, c9_2 ---------------------------------------- (11) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: ENCODE_*(z0, z1) -> c4(ENCARG(z0), ENCARG(z1)) Removed 3 trailing nodes: ENCODE_U -> c5 ENCARG(u) -> c1 +'(z0, z1) -> c6 ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(*(z0, z1)) -> *(encArg(z0), encArg(z1)) encArg(u) -> u encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) encode_+(z0, z1) -> +(encArg(z0), encArg(z1)) encode_*(z0, z1) -> *(encArg(z0), encArg(z1)) encode_u -> u +(z0, z1) -> c_+(z0, z1) +(*(z0, z1), *(z0, z2)) -> *(z0, +(z1, z2)) +(c_+(z0, z1), z2) -> +(z0, +(z1, z2)) +(*(z0, z1), c_+(*(z0, z2), u)) -> +(*(z0, +(z1, z2)), u) Tuples: ENCARG(*(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons_+(z0, z1)) -> c2(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_+(z0, z1) -> c3(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(*(z0, z1), *(z0, z2)) -> c7(+'(z1, z2)) +'(c_+(z0, z1), z2) -> c8(+'(z0, +(z1, z2)), +'(z1, z2)) +'(*(z0, z1), c_+(*(z0, z2), u)) -> c9(+'(*(z0, +(z1, z2)), u), +'(z1, z2)) S tuples: +'(*(z0, z1), *(z0, z2)) -> c7(+'(z1, z2)) +'(c_+(z0, z1), z2) -> c8(+'(z0, +(z1, z2)), +'(z1, z2)) +'(*(z0, z1), c_+(*(z0, z2), u)) -> c9(+'(*(z0, +(z1, z2)), u), +'(z1, z2)) K tuples:none Defined Rule Symbols: +_2, encArg_1, encode_+_2, encode_*_2, encode_u Defined Pair Symbols: ENCARG_1, ENCODE_+_2, +'_2 Compound Symbols: c_2, c2_3, c3_3, c7_1, c8_2, c9_2 ---------------------------------------- (13) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(*(z0, z1)) -> *(encArg(z0), encArg(z1)) encArg(u) -> u encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) encode_+(z0, z1) -> +(encArg(z0), encArg(z1)) encode_*(z0, z1) -> *(encArg(z0), encArg(z1)) encode_u -> u +(z0, z1) -> c_+(z0, z1) +(*(z0, z1), *(z0, z2)) -> *(z0, +(z1, z2)) +(c_+(z0, z1), z2) -> +(z0, +(z1, z2)) +(*(z0, z1), c_+(*(z0, z2), u)) -> +(*(z0, +(z1, z2)), u) Tuples: ENCARG(*(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons_+(z0, z1)) -> c2(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_+(z0, z1) -> c3(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(*(z0, z1), *(z0, z2)) -> c7(+'(z1, z2)) +'(c_+(z0, z1), z2) -> c8(+'(z0, +(z1, z2)), +'(z1, z2)) +'(*(z0, z1), c_+(*(z0, z2), u)) -> c9(+'(z1, z2)) S tuples: +'(*(z0, z1), *(z0, z2)) -> c7(+'(z1, z2)) +'(c_+(z0, z1), z2) -> c8(+'(z0, +(z1, z2)), +'(z1, z2)) +'(*(z0, z1), c_+(*(z0, z2), u)) -> c9(+'(z1, z2)) K tuples:none Defined Rule Symbols: +_2, encArg_1, encode_+_2, encode_*_2, encode_u Defined Pair Symbols: ENCARG_1, ENCODE_+_2, +'_2 Compound Symbols: c_2, c2_3, c3_3, c7_1, c8_2, c9_1 ---------------------------------------- (15) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(*(z0, z1)) -> *(encArg(z0), encArg(z1)) encArg(u) -> u encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) encode_+(z0, z1) -> +(encArg(z0), encArg(z1)) encode_*(z0, z1) -> *(encArg(z0), encArg(z1)) encode_u -> u +(z0, z1) -> c_+(z0, z1) +(*(z0, z1), *(z0, z2)) -> *(z0, +(z1, z2)) +(c_+(z0, z1), z2) -> +(z0, +(z1, z2)) +(*(z0, z1), c_+(*(z0, z2), u)) -> +(*(z0, +(z1, z2)), u) Tuples: ENCARG(*(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons_+(z0, z1)) -> c2(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(*(z0, z1), *(z0, z2)) -> c7(+'(z1, z2)) +'(c_+(z0, z1), z2) -> c8(+'(z0, +(z1, z2)), +'(z1, z2)) +'(*(z0, z1), c_+(*(z0, z2), u)) -> c9(+'(z1, z2)) ENCODE_+(z0, z1) -> c1(+'(encArg(z0), encArg(z1))) ENCODE_+(z0, z1) -> c1(ENCARG(z0)) ENCODE_+(z0, z1) -> c1(ENCARG(z1)) S tuples: +'(*(z0, z1), *(z0, z2)) -> c7(+'(z1, z2)) +'(c_+(z0, z1), z2) -> c8(+'(z0, +(z1, z2)), +'(z1, z2)) +'(*(z0, z1), c_+(*(z0, z2), u)) -> c9(+'(z1, z2)) K tuples:none Defined Rule Symbols: +_2, encArg_1, encode_+_2, encode_*_2, encode_u Defined Pair Symbols: ENCARG_1, +'_2, ENCODE_+_2 Compound Symbols: c_2, c2_3, c7_1, c8_2, c9_1, c1_1 ---------------------------------------- (17) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_+(z0, z1) -> c1(ENCARG(z0)) ENCODE_+(z0, z1) -> c1(ENCARG(z1)) ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(*(z0, z1)) -> *(encArg(z0), encArg(z1)) encArg(u) -> u encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) encode_+(z0, z1) -> +(encArg(z0), encArg(z1)) encode_*(z0, z1) -> *(encArg(z0), encArg(z1)) encode_u -> u +(z0, z1) -> c_+(z0, z1) +(*(z0, z1), *(z0, z2)) -> *(z0, +(z1, z2)) +(c_+(z0, z1), z2) -> +(z0, +(z1, z2)) +(*(z0, z1), c_+(*(z0, z2), u)) -> +(*(z0, +(z1, z2)), u) Tuples: ENCARG(*(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons_+(z0, z1)) -> c2(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(*(z0, z1), *(z0, z2)) -> c7(+'(z1, z2)) +'(c_+(z0, z1), z2) -> c8(+'(z0, +(z1, z2)), +'(z1, z2)) +'(*(z0, z1), c_+(*(z0, z2), u)) -> c9(+'(z1, z2)) ENCODE_+(z0, z1) -> c1(+'(encArg(z0), encArg(z1))) S tuples: +'(*(z0, z1), *(z0, z2)) -> c7(+'(z1, z2)) +'(c_+(z0, z1), z2) -> c8(+'(z0, +(z1, z2)), +'(z1, z2)) +'(*(z0, z1), c_+(*(z0, z2), u)) -> c9(+'(z1, z2)) K tuples:none Defined Rule Symbols: +_2, encArg_1, encode_+_2, encode_*_2, encode_u Defined Pair Symbols: ENCARG_1, +'_2, ENCODE_+_2 Compound Symbols: c_2, c2_3, c7_1, c8_2, c9_1, c1_1 ---------------------------------------- (19) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_+(z0, z1) -> +(encArg(z0), encArg(z1)) encode_*(z0, z1) -> *(encArg(z0), encArg(z1)) encode_u -> u ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(*(z0, z1)) -> *(encArg(z0), encArg(z1)) encArg(u) -> u encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) +(z0, z1) -> c_+(z0, z1) +(*(z0, z1), *(z0, z2)) -> *(z0, +(z1, z2)) +(c_+(z0, z1), z2) -> +(z0, +(z1, z2)) +(*(z0, z1), c_+(*(z0, z2), u)) -> +(*(z0, +(z1, z2)), u) Tuples: ENCARG(*(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons_+(z0, z1)) -> c2(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(*(z0, z1), *(z0, z2)) -> c7(+'(z1, z2)) +'(c_+(z0, z1), z2) -> c8(+'(z0, +(z1, z2)), +'(z1, z2)) +'(*(z0, z1), c_+(*(z0, z2), u)) -> c9(+'(z1, z2)) ENCODE_+(z0, z1) -> c1(+'(encArg(z0), encArg(z1))) S tuples: +'(*(z0, z1), *(z0, z2)) -> c7(+'(z1, z2)) +'(c_+(z0, z1), z2) -> c8(+'(z0, +(z1, z2)), +'(z1, z2)) +'(*(z0, z1), c_+(*(z0, z2), u)) -> c9(+'(z1, z2)) K tuples:none Defined Rule Symbols: encArg_1, +_2 Defined Pair Symbols: ENCARG_1, +'_2, ENCODE_+_2 Compound Symbols: c_2, c2_3, c7_1, c8_2, c9_1, c1_1 ---------------------------------------- (21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^3))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. +'(*(z0, z1), *(z0, z2)) -> c7(+'(z1, z2)) +'(*(z0, z1), c_+(*(z0, z2), u)) -> c9(+'(z1, z2)) We considered the (Usable) Rules: encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) +(*(z0, z1), *(z0, z2)) -> *(z0, +(z1, z2)) +(c_+(z0, z1), z2) -> +(z0, +(z1, z2)) encArg(*(z0, z1)) -> *(encArg(z0), encArg(z1)) +(z0, z1) -> c_+(z0, z1) +(*(z0, z1), c_+(*(z0, z2), u)) -> +(*(z0, +(z1, z2)), u) encArg(u) -> u And the Tuples: ENCARG(*(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons_+(z0, z1)) -> c2(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(*(z0, z1), *(z0, z2)) -> c7(+'(z1, z2)) +'(c_+(z0, z1), z2) -> c8(+'(z0, +(z1, z2)), +'(z1, z2)) +'(*(z0, z1), c_+(*(z0, z2), u)) -> c9(+'(z1, z2)) ENCODE_+(z0, z1) -> c1(+'(encArg(z0), encArg(z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(*(x_1, x_2)) = [1] + x_1 + x_2 POL(+(x_1, x_2)) = x_1 + x_2 POL(+'(x_1, x_2)) = x_1^2 POL(ENCARG(x_1)) = x_1^3 POL(ENCODE_+(x_1, x_2)) = x_1^2 POL(c(x_1, x_2)) = x_1 + x_2 POL(c1(x_1)) = x_1 POL(c2(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c7(x_1)) = x_1 POL(c8(x_1, x_2)) = x_1 + x_2 POL(c9(x_1)) = x_1 POL(c_+(x_1, x_2)) = x_1 + x_2 POL(cons_+(x_1, x_2)) = [1] + x_1 + x_2 POL(encArg(x_1)) = x_1 POL(u) = 0 ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: encArg(*(z0, z1)) -> *(encArg(z0), encArg(z1)) encArg(u) -> u encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) +(z0, z1) -> c_+(z0, z1) +(*(z0, z1), *(z0, z2)) -> *(z0, +(z1, z2)) +(c_+(z0, z1), z2) -> +(z0, +(z1, z2)) +(*(z0, z1), c_+(*(z0, z2), u)) -> +(*(z0, +(z1, z2)), u) Tuples: ENCARG(*(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons_+(z0, z1)) -> c2(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(*(z0, z1), *(z0, z2)) -> c7(+'(z1, z2)) +'(c_+(z0, z1), z2) -> c8(+'(z0, +(z1, z2)), +'(z1, z2)) +'(*(z0, z1), c_+(*(z0, z2), u)) -> c9(+'(z1, z2)) ENCODE_+(z0, z1) -> c1(+'(encArg(z0), encArg(z1))) S tuples: +'(c_+(z0, z1), z2) -> c8(+'(z0, +(z1, z2)), +'(z1, z2)) K tuples: +'(*(z0, z1), *(z0, z2)) -> c7(+'(z1, z2)) +'(*(z0, z1), c_+(*(z0, z2), u)) -> c9(+'(z1, z2)) Defined Rule Symbols: encArg_1, +_2 Defined Pair Symbols: ENCARG_1, +'_2, ENCODE_+_2 Compound Symbols: c_2, c2_3, c7_1, c8_2, c9_1, c1_1 ---------------------------------------- (23) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. +'(c_+(z0, z1), z2) -> c8(+'(z0, +(z1, z2)), +'(z1, z2)) We considered the (Usable) Rules: encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) +(*(z0, z1), *(z0, z2)) -> *(z0, +(z1, z2)) +(c_+(z0, z1), z2) -> +(z0, +(z1, z2)) encArg(*(z0, z1)) -> *(encArg(z0), encArg(z1)) +(z0, z1) -> c_+(z0, z1) +(*(z0, z1), c_+(*(z0, z2), u)) -> +(*(z0, +(z1, z2)), u) encArg(u) -> u And the Tuples: ENCARG(*(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons_+(z0, z1)) -> c2(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(*(z0, z1), *(z0, z2)) -> c7(+'(z1, z2)) +'(c_+(z0, z1), z2) -> c8(+'(z0, +(z1, z2)), +'(z1, z2)) +'(*(z0, z1), c_+(*(z0, z2), u)) -> c9(+'(z1, z2)) ENCODE_+(z0, z1) -> c1(+'(encArg(z0), encArg(z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(*(x_1, x_2)) = [2] + x_1 + x_2 POL(+(x_1, x_2)) = [1] + x_1 + x_2 POL(+'(x_1, x_2)) = x_1 POL(ENCARG(x_1)) = [2] + x_1^2 POL(ENCODE_+(x_1, x_2)) = [2] + [2]x_1 + [2]x_2^2 + [2]x_1*x_2 + [2]x_1^2 POL(c(x_1, x_2)) = x_1 + x_2 POL(c1(x_1)) = x_1 POL(c2(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c7(x_1)) = x_1 POL(c8(x_1, x_2)) = x_1 + x_2 POL(c9(x_1)) = x_1 POL(c_+(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_+(x_1, x_2)) = [2] + x_1 + x_2 POL(encArg(x_1)) = [2] + [2]x_1 POL(u) = [1] ---------------------------------------- (24) Obligation: Complexity Dependency Tuples Problem Rules: encArg(*(z0, z1)) -> *(encArg(z0), encArg(z1)) encArg(u) -> u encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) +(z0, z1) -> c_+(z0, z1) +(*(z0, z1), *(z0, z2)) -> *(z0, +(z1, z2)) +(c_+(z0, z1), z2) -> +(z0, +(z1, z2)) +(*(z0, z1), c_+(*(z0, z2), u)) -> +(*(z0, +(z1, z2)), u) Tuples: ENCARG(*(z0, z1)) -> c(ENCARG(z0), ENCARG(z1)) ENCARG(cons_+(z0, z1)) -> c2(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(*(z0, z1), *(z0, z2)) -> c7(+'(z1, z2)) +'(c_+(z0, z1), z2) -> c8(+'(z0, +(z1, z2)), +'(z1, z2)) +'(*(z0, z1), c_+(*(z0, z2), u)) -> c9(+'(z1, z2)) ENCODE_+(z0, z1) -> c1(+'(encArg(z0), encArg(z1))) S tuples:none K tuples: +'(*(z0, z1), *(z0, z2)) -> c7(+'(z1, z2)) +'(*(z0, z1), c_+(*(z0, z2), u)) -> c9(+'(z1, z2)) +'(c_+(z0, z1), z2) -> c8(+'(z0, +(z1, z2)), +'(z1, z2)) Defined Rule Symbols: encArg_1, +_2 Defined Pair Symbols: ENCARG_1, +'_2, ENCODE_+_2 Compound Symbols: c_2, c2_3, c7_1, c8_2, c9_1, c1_1 ---------------------------------------- (25) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (26) BOUNDS(1, 1) ---------------------------------------- (27) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (28) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: +'(*'(x, y), *'(x, z)) -> *'(x, +'(y, z)) +'(+'(x, y), z) -> +'(x, +'(y, z)) +'(*'(x, y), +'(*'(x, z), u)) -> +'(*'(x, +'(y, z)), u) The (relative) TRS S consists of the following rules: encArg(*'(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encArg(u) -> u encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) encode_u -> u Rewrite Strategy: FULL ---------------------------------------- (29) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (30) Obligation: TRS: Rules: +'(*'(x, y), *'(x, z)) -> *'(x, +'(y, z)) +'(+'(x, y), z) -> +'(x, +'(y, z)) +'(*'(x, y), +'(*'(x, z), u)) -> +'(*'(x, +'(y, z)), u) encArg(*'(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encArg(u) -> u encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) encode_u -> u Types: +' :: *':u:cons_+ -> *':u:cons_+ -> *':u:cons_+ *' :: *':u:cons_+ -> *':u:cons_+ -> *':u:cons_+ u :: *':u:cons_+ encArg :: *':u:cons_+ -> *':u:cons_+ cons_+ :: *':u:cons_+ -> *':u:cons_+ -> *':u:cons_+ encode_+ :: *':u:cons_+ -> *':u:cons_+ -> *':u:cons_+ encode_* :: *':u:cons_+ -> *':u:cons_+ -> *':u:cons_+ encode_u :: *':u:cons_+ hole_*':u:cons_+1_0 :: *':u:cons_+ gen_*':u:cons_+2_0 :: Nat -> *':u:cons_+ ---------------------------------------- (31) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: +', encArg They will be analysed ascendingly in the following order: +' < encArg ---------------------------------------- (32) Obligation: TRS: Rules: +'(*'(x, y), *'(x, z)) -> *'(x, +'(y, z)) +'(+'(x, y), z) -> +'(x, +'(y, z)) +'(*'(x, y), +'(*'(x, z), u)) -> +'(*'(x, +'(y, z)), u) encArg(*'(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encArg(u) -> u encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) encode_u -> u Types: +' :: *':u:cons_+ -> *':u:cons_+ -> *':u:cons_+ *' :: *':u:cons_+ -> *':u:cons_+ -> *':u:cons_+ u :: *':u:cons_+ encArg :: *':u:cons_+ -> *':u:cons_+ cons_+ :: *':u:cons_+ -> *':u:cons_+ -> *':u:cons_+ encode_+ :: *':u:cons_+ -> *':u:cons_+ -> *':u:cons_+ encode_* :: *':u:cons_+ -> *':u:cons_+ -> *':u:cons_+ encode_u :: *':u:cons_+ hole_*':u:cons_+1_0 :: *':u:cons_+ gen_*':u:cons_+2_0 :: Nat -> *':u:cons_+ Generator Equations: gen_*':u:cons_+2_0(0) <=> u gen_*':u:cons_+2_0(+(x, 1)) <=> *'(u, gen_*':u:cons_+2_0(x)) The following defined symbols remain to be analysed: +', encArg They will be analysed ascendingly in the following order: +' < encArg ---------------------------------------- (33) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: +'(gen_*':u:cons_+2_0(+(1, n4_0)), gen_*':u:cons_+2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Induction Base: +'(gen_*':u:cons_+2_0(+(1, 0)), gen_*':u:cons_+2_0(+(1, 0))) Induction Step: +'(gen_*':u:cons_+2_0(+(1, +(n4_0, 1))), gen_*':u:cons_+2_0(+(1, +(n4_0, 1)))) ->_R^Omega(1) *'(u, +'(gen_*':u:cons_+2_0(+(1, n4_0)), gen_*':u:cons_+2_0(+(1, n4_0)))) ->_IH *'(u, *3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (34) Complex Obligation (BEST) ---------------------------------------- (35) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: +'(*'(x, y), *'(x, z)) -> *'(x, +'(y, z)) +'(+'(x, y), z) -> +'(x, +'(y, z)) +'(*'(x, y), +'(*'(x, z), u)) -> +'(*'(x, +'(y, z)), u) encArg(*'(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encArg(u) -> u encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) encode_u -> u Types: +' :: *':u:cons_+ -> *':u:cons_+ -> *':u:cons_+ *' :: *':u:cons_+ -> *':u:cons_+ -> *':u:cons_+ u :: *':u:cons_+ encArg :: *':u:cons_+ -> *':u:cons_+ cons_+ :: *':u:cons_+ -> *':u:cons_+ -> *':u:cons_+ encode_+ :: *':u:cons_+ -> *':u:cons_+ -> *':u:cons_+ encode_* :: *':u:cons_+ -> *':u:cons_+ -> *':u:cons_+ encode_u :: *':u:cons_+ hole_*':u:cons_+1_0 :: *':u:cons_+ gen_*':u:cons_+2_0 :: Nat -> *':u:cons_+ Generator Equations: gen_*':u:cons_+2_0(0) <=> u gen_*':u:cons_+2_0(+(x, 1)) <=> *'(u, gen_*':u:cons_+2_0(x)) The following defined symbols remain to be analysed: +', encArg They will be analysed ascendingly in the following order: +' < encArg ---------------------------------------- (36) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (37) BOUNDS(n^1, INF) ---------------------------------------- (38) Obligation: TRS: Rules: +'(*'(x, y), *'(x, z)) -> *'(x, +'(y, z)) +'(+'(x, y), z) -> +'(x, +'(y, z)) +'(*'(x, y), +'(*'(x, z), u)) -> +'(*'(x, +'(y, z)), u) encArg(*'(x_1, x_2)) -> *'(encArg(x_1), encArg(x_2)) encArg(u) -> u encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *'(encArg(x_1), encArg(x_2)) encode_u -> u Types: +' :: *':u:cons_+ -> *':u:cons_+ -> *':u:cons_+ *' :: *':u:cons_+ -> *':u:cons_+ -> *':u:cons_+ u :: *':u:cons_+ encArg :: *':u:cons_+ -> *':u:cons_+ cons_+ :: *':u:cons_+ -> *':u:cons_+ -> *':u:cons_+ encode_+ :: *':u:cons_+ -> *':u:cons_+ -> *':u:cons_+ encode_* :: *':u:cons_+ -> *':u:cons_+ -> *':u:cons_+ encode_u :: *':u:cons_+ hole_*':u:cons_+1_0 :: *':u:cons_+ gen_*':u:cons_+2_0 :: Nat -> *':u:cons_+ Lemmas: +'(gen_*':u:cons_+2_0(+(1, n4_0)), gen_*':u:cons_+2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Generator Equations: gen_*':u:cons_+2_0(0) <=> u gen_*':u:cons_+2_0(+(x, 1)) <=> *'(u, gen_*':u:cons_+2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (39) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_*':u:cons_+2_0(n1547_0)) -> gen_*':u:cons_+2_0(n1547_0), rt in Omega(0) Induction Base: encArg(gen_*':u:cons_+2_0(0)) ->_R^Omega(0) u Induction Step: encArg(gen_*':u:cons_+2_0(+(n1547_0, 1))) ->_R^Omega(0) *'(encArg(u), encArg(gen_*':u:cons_+2_0(n1547_0))) ->_R^Omega(0) *'(u, encArg(gen_*':u:cons_+2_0(n1547_0))) ->_IH *'(u, gen_*':u:cons_+2_0(c1548_0)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (40) BOUNDS(1, INF)