/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 170 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsTAProof [FINISHED, 10 ms] (8) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: app(app(apply, f), x) -> app(f, x) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(apply) -> apply encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_apply -> apply ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: app(app(apply, f), x) -> app(f, x) The (relative) TRS S consists of the following rules: encArg(apply) -> apply encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_apply -> apply Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: app(app(apply, f), x) -> app(f, x) The (relative) TRS S consists of the following rules: encArg(apply) -> apply encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_apply -> apply Rewrite Strategy: FULL ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: app(app(apply, f), x) -> app(f, x) encArg(apply) -> apply encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_apply -> apply S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4] transitions: apply0() -> 0 cons_app0(0, 0) -> 0 app0(0, 0) -> 1 encArg0(0) -> 2 encode_app0(0, 0) -> 3 encode_apply0() -> 4 apply1() -> 2 encArg1(0) -> 5 encArg1(0) -> 6 app1(5, 6) -> 2 app1(5, 6) -> 3 apply1() -> 4 apply1() -> 5 apply1() -> 6 app1(5, 6) -> 5 app1(5, 6) -> 6 app2(6, 6) -> 2 app2(6, 6) -> 3 app2(6, 6) -> 5 app2(6, 6) -> 6 ---------------------------------------- (8) BOUNDS(1, n^1)