/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 185 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsTAProof [FINISHED, 83 ms] (8) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: p(p(b(a(x0)), x1), p(x2, x3)) -> p(p(x3, a(x2)), p(b(a(x1)), b(x0))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(b(x_1)) -> b(encArg(x_1)) encArg(a(x_1)) -> a(encArg(x_1)) encArg(cons_p(x_1, x_2)) -> p(encArg(x_1), encArg(x_2)) encode_p(x_1, x_2) -> p(encArg(x_1), encArg(x_2)) encode_b(x_1) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: p(p(b(a(x0)), x1), p(x2, x3)) -> p(p(x3, a(x2)), p(b(a(x1)), b(x0))) The (relative) TRS S consists of the following rules: encArg(b(x_1)) -> b(encArg(x_1)) encArg(a(x_1)) -> a(encArg(x_1)) encArg(cons_p(x_1, x_2)) -> p(encArg(x_1), encArg(x_2)) encode_p(x_1, x_2) -> p(encArg(x_1), encArg(x_2)) encode_b(x_1) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: p(p(b(a(x0)), x1), p(x2, x3)) -> p(p(x3, a(x2)), p(b(a(x1)), b(x0))) The (relative) TRS S consists of the following rules: encArg(b(x_1)) -> b(encArg(x_1)) encArg(a(x_1)) -> a(encArg(x_1)) encArg(cons_p(x_1, x_2)) -> p(encArg(x_1), encArg(x_2)) encode_p(x_1, x_2) -> p(encArg(x_1), encArg(x_2)) encode_b(x_1) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: p(p(b(a(x0)), x1), p(x2, x3)) -> p(p(x3, a(x2)), p(b(a(x1)), b(x0))) encArg(b(x_1)) -> b(encArg(x_1)) encArg(a(x_1)) -> a(encArg(x_1)) encArg(cons_p(x_1, x_2)) -> p(encArg(x_1), encArg(x_2)) encode_p(x_1, x_2) -> p(encArg(x_1), encArg(x_2)) encode_b(x_1) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5] transitions: b0(0) -> 0 a0(0) -> 0 cons_p0(0, 0) -> 0 p0(0, 0) -> 1 encArg0(0) -> 2 encode_p0(0, 0) -> 3 encode_b0(0) -> 4 encode_a0(0) -> 5 encArg1(0) -> 6 b1(6) -> 2 encArg1(0) -> 7 a1(7) -> 2 encArg1(0) -> 8 encArg1(0) -> 9 p1(8, 9) -> 2 p1(8, 9) -> 3 b1(6) -> 4 a1(7) -> 5 b1(6) -> 6 b1(6) -> 7 b1(6) -> 8 b1(6) -> 9 a1(7) -> 6 a1(7) -> 7 a1(7) -> 8 a1(7) -> 9 p1(8, 9) -> 6 p1(8, 9) -> 7 p1(8, 9) -> 8 p1(8, 9) -> 9 a2(8) -> 11 p2(9, 11) -> 10 a2(9) -> 14 b2(14) -> 13 b2(7) -> 15 p2(13, 15) -> 12 p2(10, 12) -> 2 p2(10, 12) -> 3 p2(10, 12) -> 6 p2(10, 12) -> 7 p2(10, 12) -> 8 p2(10, 12) -> 9 a2(10) -> 11 p2(12, 11) -> 10 a2(13) -> 11 p2(15, 11) -> 10 a2(11) -> 14 ---------------------------------------- (8) BOUNDS(1, n^1)