/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 168 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 366 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 51 ms] (18) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(s(x), x) -> f(s(x), round(s(x))) round(0) -> 0 round(0) -> s(0) round(s(0)) -> s(0) round(s(s(x))) -> s(s(round(x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_round(x_1)) -> round(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_round(x_1) -> round(encArg(x_1)) encode_0 -> 0 ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(s(x), x) -> f(s(x), round(s(x))) round(0) -> 0 round(0) -> s(0) round(s(0)) -> s(0) round(s(s(x))) -> s(s(round(x))) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_round(x_1)) -> round(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_round(x_1) -> round(encArg(x_1)) encode_0 -> 0 Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(s(x), x) -> f(s(x), round(s(x))) round(0) -> 0 round(0) -> s(0) round(s(0)) -> s(0) round(s(s(x))) -> s(s(round(x))) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_round(x_1)) -> round(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_round(x_1) -> round(encArg(x_1)) encode_0 -> 0 Rewrite Strategy: FULL ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(s(x), x) -> f(s(x), round(s(x))) round(0') -> 0' round(0') -> s(0') round(s(0')) -> s(0') round(s(s(x))) -> s(s(round(x))) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_round(x_1)) -> round(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_round(x_1) -> round(encArg(x_1)) encode_0 -> 0' Rewrite Strategy: FULL ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: TRS: Rules: f(s(x), x) -> f(s(x), round(s(x))) round(0') -> 0' round(0') -> s(0') round(s(0')) -> s(0') round(s(s(x))) -> s(s(round(x))) encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_round(x_1)) -> round(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_round(x_1) -> round(encArg(x_1)) encode_0 -> 0' Types: f :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round -> s:0':cons_f:cons_round s :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round round :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round 0' :: s:0':cons_f:cons_round encArg :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round cons_f :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round -> s:0':cons_f:cons_round cons_round :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round encode_f :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round -> s:0':cons_f:cons_round encode_s :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round encode_round :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round encode_0 :: s:0':cons_f:cons_round hole_s:0':cons_f:cons_round1_3 :: s:0':cons_f:cons_round gen_s:0':cons_f:cons_round2_3 :: Nat -> s:0':cons_f:cons_round ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, round, encArg They will be analysed ascendingly in the following order: round < f f < encArg round < encArg ---------------------------------------- (10) Obligation: TRS: Rules: f(s(x), x) -> f(s(x), round(s(x))) round(0') -> 0' round(0') -> s(0') round(s(0')) -> s(0') round(s(s(x))) -> s(s(round(x))) encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_round(x_1)) -> round(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_round(x_1) -> round(encArg(x_1)) encode_0 -> 0' Types: f :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round -> s:0':cons_f:cons_round s :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round round :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round 0' :: s:0':cons_f:cons_round encArg :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round cons_f :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round -> s:0':cons_f:cons_round cons_round :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round encode_f :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round -> s:0':cons_f:cons_round encode_s :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round encode_round :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round encode_0 :: s:0':cons_f:cons_round hole_s:0':cons_f:cons_round1_3 :: s:0':cons_f:cons_round gen_s:0':cons_f:cons_round2_3 :: Nat -> s:0':cons_f:cons_round Generator Equations: gen_s:0':cons_f:cons_round2_3(0) <=> 0' gen_s:0':cons_f:cons_round2_3(+(x, 1)) <=> s(gen_s:0':cons_f:cons_round2_3(x)) The following defined symbols remain to be analysed: round, f, encArg They will be analysed ascendingly in the following order: round < f f < encArg round < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: round(gen_s:0':cons_f:cons_round2_3(*(2, n4_3))) -> gen_s:0':cons_f:cons_round2_3(*(2, n4_3)), rt in Omega(1 + n4_3) Induction Base: round(gen_s:0':cons_f:cons_round2_3(*(2, 0))) ->_R^Omega(1) 0' Induction Step: round(gen_s:0':cons_f:cons_round2_3(*(2, +(n4_3, 1)))) ->_R^Omega(1) s(s(round(gen_s:0':cons_f:cons_round2_3(*(2, n4_3))))) ->_IH s(s(gen_s:0':cons_f:cons_round2_3(*(2, c5_3)))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: f(s(x), x) -> f(s(x), round(s(x))) round(0') -> 0' round(0') -> s(0') round(s(0')) -> s(0') round(s(s(x))) -> s(s(round(x))) encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_round(x_1)) -> round(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_round(x_1) -> round(encArg(x_1)) encode_0 -> 0' Types: f :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round -> s:0':cons_f:cons_round s :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round round :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round 0' :: s:0':cons_f:cons_round encArg :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round cons_f :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round -> s:0':cons_f:cons_round cons_round :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round encode_f :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round -> s:0':cons_f:cons_round encode_s :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round encode_round :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round encode_0 :: s:0':cons_f:cons_round hole_s:0':cons_f:cons_round1_3 :: s:0':cons_f:cons_round gen_s:0':cons_f:cons_round2_3 :: Nat -> s:0':cons_f:cons_round Generator Equations: gen_s:0':cons_f:cons_round2_3(0) <=> 0' gen_s:0':cons_f:cons_round2_3(+(x, 1)) <=> s(gen_s:0':cons_f:cons_round2_3(x)) The following defined symbols remain to be analysed: round, f, encArg They will be analysed ascendingly in the following order: round < f f < encArg round < encArg ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: TRS: Rules: f(s(x), x) -> f(s(x), round(s(x))) round(0') -> 0' round(0') -> s(0') round(s(0')) -> s(0') round(s(s(x))) -> s(s(round(x))) encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_round(x_1)) -> round(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_round(x_1) -> round(encArg(x_1)) encode_0 -> 0' Types: f :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round -> s:0':cons_f:cons_round s :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round round :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round 0' :: s:0':cons_f:cons_round encArg :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round cons_f :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round -> s:0':cons_f:cons_round cons_round :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round encode_f :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round -> s:0':cons_f:cons_round encode_s :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round encode_round :: s:0':cons_f:cons_round -> s:0':cons_f:cons_round encode_0 :: s:0':cons_f:cons_round hole_s:0':cons_f:cons_round1_3 :: s:0':cons_f:cons_round gen_s:0':cons_f:cons_round2_3 :: Nat -> s:0':cons_f:cons_round Lemmas: round(gen_s:0':cons_f:cons_round2_3(*(2, n4_3))) -> gen_s:0':cons_f:cons_round2_3(*(2, n4_3)), rt in Omega(1 + n4_3) Generator Equations: gen_s:0':cons_f:cons_round2_3(0) <=> 0' gen_s:0':cons_f:cons_round2_3(+(x, 1)) <=> s(gen_s:0':cons_f:cons_round2_3(x)) The following defined symbols remain to be analysed: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_s:0':cons_f:cons_round2_3(n587_3)) -> gen_s:0':cons_f:cons_round2_3(n587_3), rt in Omega(0) Induction Base: encArg(gen_s:0':cons_f:cons_round2_3(0)) ->_R^Omega(0) 0' Induction Step: encArg(gen_s:0':cons_f:cons_round2_3(+(n587_3, 1))) ->_R^Omega(0) s(encArg(gen_s:0':cons_f:cons_round2_3(n587_3))) ->_IH s(gen_s:0':cons_f:cons_round2_3(c588_3)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (18) BOUNDS(1, INF)