/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 58 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsProof [FINISHED, 0 ms] (8) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: b(c(a(b(b(c(x1)))))) -> a(b(c(b(b(c(a(x1))))))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(c(x_1)) -> c(encArg(x_1)) encArg(a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: b(c(a(b(b(c(x1)))))) -> a(b(c(b(b(c(a(x1))))))) The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: b(c(a(b(b(c(x1)))))) -> a(b(c(b(b(c(a(x1))))))) The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: b(c(a(b(b(c(x1)))))) -> a(b(c(b(b(c(a(x1))))))) encArg(c(x_1)) -> c(encArg(x_1)) encArg(a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) CpxTrsMatchBoundsProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 2. The certificate found is represented by the following graph. "[27, 28, 29, 30, 31, 32, 33, 34, 35] {(27,28,[b_1|0, encArg_1|0, encode_b_1|0, encode_c_1|0, encode_a_1|0]), (27,29,[c_1|1, a_1|1, b_1|1]), (27,30,[a_1|2]), (28,28,[c_1|0, a_1|0, cons_b_1|0]), (29,28,[encArg_1|1]), (29,29,[c_1|1, a_1|1, b_1|1]), (29,30,[a_1|2]), (30,31,[b_1|2]), (31,32,[c_1|2]), (32,33,[b_1|2]), (33,34,[b_1|2]), (33,30,[a_1|2]), (34,35,[c_1|2]), (35,29,[a_1|2])}" ---------------------------------------- (8) BOUNDS(1, n^1)