/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 79 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 462 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 90 ms] (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 91 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 105 ms] (22) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: s(b(x1)) -> b(s(s(s(x1)))) s(b(s(x1))) -> b(t(x1)) t(b(x1)) -> b(s(x1)) t(b(s(x1))) -> u(t(b(x1))) b(u(x1)) -> b(s(x1)) t(s(x1)) -> t(t(x1)) t(u(x1)) -> u(t(x1)) s(u(x1)) -> s(s(x1)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(u(x_1)) -> u(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_t(x_1)) -> t(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_t(x_1) -> t(encArg(x_1)) encode_u(x_1) -> u(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: s(b(x1)) -> b(s(s(s(x1)))) s(b(s(x1))) -> b(t(x1)) t(b(x1)) -> b(s(x1)) t(b(s(x1))) -> u(t(b(x1))) b(u(x1)) -> b(s(x1)) t(s(x1)) -> t(t(x1)) t(u(x1)) -> u(t(x1)) s(u(x1)) -> s(s(x1)) The (relative) TRS S consists of the following rules: encArg(u(x_1)) -> u(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_t(x_1)) -> t(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_t(x_1) -> t(encArg(x_1)) encode_u(x_1) -> u(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: s(b(x1)) -> b(s(s(s(x1)))) s(b(s(x1))) -> b(t(x1)) t(b(x1)) -> b(s(x1)) t(b(s(x1))) -> u(t(b(x1))) b(u(x1)) -> b(s(x1)) t(s(x1)) -> t(t(x1)) t(u(x1)) -> u(t(x1)) s(u(x1)) -> s(s(x1)) The (relative) TRS S consists of the following rules: encArg(u(x_1)) -> u(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_t(x_1)) -> t(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_t(x_1) -> t(encArg(x_1)) encode_u(x_1) -> u(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: s(b(x1)) -> b(s(s(s(x1)))) s(b(s(x1))) -> b(t(x1)) t(b(x1)) -> b(s(x1)) t(b(s(x1))) -> u(t(b(x1))) b(u(x1)) -> b(s(x1)) t(s(x1)) -> t(t(x1)) t(u(x1)) -> u(t(x1)) s(u(x1)) -> s(s(x1)) The (relative) TRS S consists of the following rules: encArg(u(x_1)) -> u(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_t(x_1)) -> t(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_t(x_1) -> t(encArg(x_1)) encode_u(x_1) -> u(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: TRS: Rules: s(b(x1)) -> b(s(s(s(x1)))) s(b(s(x1))) -> b(t(x1)) t(b(x1)) -> b(s(x1)) t(b(s(x1))) -> u(t(b(x1))) b(u(x1)) -> b(s(x1)) t(s(x1)) -> t(t(x1)) t(u(x1)) -> u(t(x1)) s(u(x1)) -> s(s(x1)) encArg(u(x_1)) -> u(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_t(x_1)) -> t(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_t(x_1) -> t(encArg(x_1)) encode_u(x_1) -> u(encArg(x_1)) Types: s :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b b :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b t :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b u :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encArg :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b cons_s :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b cons_t :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b cons_b :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encode_s :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encode_b :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encode_t :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encode_u :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b hole_u:cons_s:cons_t:cons_b1_0 :: u:cons_s:cons_t:cons_b gen_u:cons_s:cons_t:cons_b2_0 :: Nat -> u:cons_s:cons_t:cons_b ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: s, b, t, encArg They will be analysed ascendingly in the following order: s = b s = t s < encArg b = t b < encArg t < encArg ---------------------------------------- (10) Obligation: TRS: Rules: s(b(x1)) -> b(s(s(s(x1)))) s(b(s(x1))) -> b(t(x1)) t(b(x1)) -> b(s(x1)) t(b(s(x1))) -> u(t(b(x1))) b(u(x1)) -> b(s(x1)) t(s(x1)) -> t(t(x1)) t(u(x1)) -> u(t(x1)) s(u(x1)) -> s(s(x1)) encArg(u(x_1)) -> u(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_t(x_1)) -> t(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_t(x_1) -> t(encArg(x_1)) encode_u(x_1) -> u(encArg(x_1)) Types: s :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b b :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b t :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b u :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encArg :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b cons_s :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b cons_t :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b cons_b :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encode_s :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encode_b :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encode_t :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encode_u :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b hole_u:cons_s:cons_t:cons_b1_0 :: u:cons_s:cons_t:cons_b gen_u:cons_s:cons_t:cons_b2_0 :: Nat -> u:cons_s:cons_t:cons_b Generator Equations: gen_u:cons_s:cons_t:cons_b2_0(0) <=> hole_u:cons_s:cons_t:cons_b1_0 gen_u:cons_s:cons_t:cons_b2_0(+(x, 1)) <=> u(gen_u:cons_s:cons_t:cons_b2_0(x)) The following defined symbols remain to be analysed: b, s, t, encArg They will be analysed ascendingly in the following order: s = b s = t s < encArg b = t b < encArg t < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: s(gen_u:cons_s:cons_t:cons_b2_0(+(1, n354_0))) -> *3_0, rt in Omega(n354_0) Induction Base: s(gen_u:cons_s:cons_t:cons_b2_0(+(1, 0))) Induction Step: s(gen_u:cons_s:cons_t:cons_b2_0(+(1, +(n354_0, 1)))) ->_R^Omega(1) s(s(gen_u:cons_s:cons_t:cons_b2_0(+(1, n354_0)))) ->_IH s(*3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: s(b(x1)) -> b(s(s(s(x1)))) s(b(s(x1))) -> b(t(x1)) t(b(x1)) -> b(s(x1)) t(b(s(x1))) -> u(t(b(x1))) b(u(x1)) -> b(s(x1)) t(s(x1)) -> t(t(x1)) t(u(x1)) -> u(t(x1)) s(u(x1)) -> s(s(x1)) encArg(u(x_1)) -> u(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_t(x_1)) -> t(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_t(x_1) -> t(encArg(x_1)) encode_u(x_1) -> u(encArg(x_1)) Types: s :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b b :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b t :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b u :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encArg :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b cons_s :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b cons_t :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b cons_b :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encode_s :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encode_b :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encode_t :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encode_u :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b hole_u:cons_s:cons_t:cons_b1_0 :: u:cons_s:cons_t:cons_b gen_u:cons_s:cons_t:cons_b2_0 :: Nat -> u:cons_s:cons_t:cons_b Generator Equations: gen_u:cons_s:cons_t:cons_b2_0(0) <=> hole_u:cons_s:cons_t:cons_b1_0 gen_u:cons_s:cons_t:cons_b2_0(+(x, 1)) <=> u(gen_u:cons_s:cons_t:cons_b2_0(x)) The following defined symbols remain to be analysed: s, t, encArg They will be analysed ascendingly in the following order: s = b s = t s < encArg b = t b < encArg t < encArg ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: TRS: Rules: s(b(x1)) -> b(s(s(s(x1)))) s(b(s(x1))) -> b(t(x1)) t(b(x1)) -> b(s(x1)) t(b(s(x1))) -> u(t(b(x1))) b(u(x1)) -> b(s(x1)) t(s(x1)) -> t(t(x1)) t(u(x1)) -> u(t(x1)) s(u(x1)) -> s(s(x1)) encArg(u(x_1)) -> u(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_t(x_1)) -> t(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_t(x_1) -> t(encArg(x_1)) encode_u(x_1) -> u(encArg(x_1)) Types: s :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b b :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b t :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b u :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encArg :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b cons_s :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b cons_t :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b cons_b :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encode_s :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encode_b :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encode_t :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encode_u :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b hole_u:cons_s:cons_t:cons_b1_0 :: u:cons_s:cons_t:cons_b gen_u:cons_s:cons_t:cons_b2_0 :: Nat -> u:cons_s:cons_t:cons_b Lemmas: s(gen_u:cons_s:cons_t:cons_b2_0(+(1, n354_0))) -> *3_0, rt in Omega(n354_0) Generator Equations: gen_u:cons_s:cons_t:cons_b2_0(0) <=> hole_u:cons_s:cons_t:cons_b1_0 gen_u:cons_s:cons_t:cons_b2_0(+(x, 1)) <=> u(gen_u:cons_s:cons_t:cons_b2_0(x)) The following defined symbols remain to be analysed: t, b, encArg They will be analysed ascendingly in the following order: s = b s = t s < encArg b = t b < encArg t < encArg ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: t(gen_u:cons_s:cons_t:cons_b2_0(+(1, n771_0))) -> *3_0, rt in Omega(n771_0) Induction Base: t(gen_u:cons_s:cons_t:cons_b2_0(+(1, 0))) Induction Step: t(gen_u:cons_s:cons_t:cons_b2_0(+(1, +(n771_0, 1)))) ->_R^Omega(1) u(t(gen_u:cons_s:cons_t:cons_b2_0(+(1, n771_0)))) ->_IH u(*3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Obligation: TRS: Rules: s(b(x1)) -> b(s(s(s(x1)))) s(b(s(x1))) -> b(t(x1)) t(b(x1)) -> b(s(x1)) t(b(s(x1))) -> u(t(b(x1))) b(u(x1)) -> b(s(x1)) t(s(x1)) -> t(t(x1)) t(u(x1)) -> u(t(x1)) s(u(x1)) -> s(s(x1)) encArg(u(x_1)) -> u(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_t(x_1)) -> t(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_t(x_1) -> t(encArg(x_1)) encode_u(x_1) -> u(encArg(x_1)) Types: s :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b b :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b t :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b u :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encArg :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b cons_s :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b cons_t :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b cons_b :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encode_s :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encode_b :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encode_t :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encode_u :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b hole_u:cons_s:cons_t:cons_b1_0 :: u:cons_s:cons_t:cons_b gen_u:cons_s:cons_t:cons_b2_0 :: Nat -> u:cons_s:cons_t:cons_b Lemmas: s(gen_u:cons_s:cons_t:cons_b2_0(+(1, n354_0))) -> *3_0, rt in Omega(n354_0) t(gen_u:cons_s:cons_t:cons_b2_0(+(1, n771_0))) -> *3_0, rt in Omega(n771_0) Generator Equations: gen_u:cons_s:cons_t:cons_b2_0(0) <=> hole_u:cons_s:cons_t:cons_b1_0 gen_u:cons_s:cons_t:cons_b2_0(+(x, 1)) <=> u(gen_u:cons_s:cons_t:cons_b2_0(x)) The following defined symbols remain to be analysed: b, s, encArg They will be analysed ascendingly in the following order: s = b s = t s < encArg b = t b < encArg t < encArg ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: s(gen_u:cons_s:cons_t:cons_b2_0(+(1, n2278_0))) -> *3_0, rt in Omega(n2278_0) Induction Base: s(gen_u:cons_s:cons_t:cons_b2_0(+(1, 0))) Induction Step: s(gen_u:cons_s:cons_t:cons_b2_0(+(1, +(n2278_0, 1)))) ->_R^Omega(1) s(s(gen_u:cons_s:cons_t:cons_b2_0(+(1, n2278_0)))) ->_IH s(*3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: s(b(x1)) -> b(s(s(s(x1)))) s(b(s(x1))) -> b(t(x1)) t(b(x1)) -> b(s(x1)) t(b(s(x1))) -> u(t(b(x1))) b(u(x1)) -> b(s(x1)) t(s(x1)) -> t(t(x1)) t(u(x1)) -> u(t(x1)) s(u(x1)) -> s(s(x1)) encArg(u(x_1)) -> u(encArg(x_1)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_t(x_1)) -> t(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_t(x_1) -> t(encArg(x_1)) encode_u(x_1) -> u(encArg(x_1)) Types: s :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b b :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b t :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b u :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encArg :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b cons_s :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b cons_t :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b cons_b :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encode_s :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encode_b :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encode_t :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b encode_u :: u:cons_s:cons_t:cons_b -> u:cons_s:cons_t:cons_b hole_u:cons_s:cons_t:cons_b1_0 :: u:cons_s:cons_t:cons_b gen_u:cons_s:cons_t:cons_b2_0 :: Nat -> u:cons_s:cons_t:cons_b Lemmas: s(gen_u:cons_s:cons_t:cons_b2_0(+(1, n2278_0))) -> *3_0, rt in Omega(n2278_0) t(gen_u:cons_s:cons_t:cons_b2_0(+(1, n771_0))) -> *3_0, rt in Omega(n771_0) Generator Equations: gen_u:cons_s:cons_t:cons_b2_0(0) <=> hole_u:cons_s:cons_t:cons_b1_0 gen_u:cons_s:cons_t:cons_b2_0(+(x, 1)) <=> u(gen_u:cons_s:cons_t:cons_b2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_u:cons_s:cons_t:cons_b2_0(+(1, n2899_0))) -> *3_0, rt in Omega(0) Induction Base: encArg(gen_u:cons_s:cons_t:cons_b2_0(+(1, 0))) Induction Step: encArg(gen_u:cons_s:cons_t:cons_b2_0(+(1, +(n2899_0, 1)))) ->_R^Omega(0) u(encArg(gen_u:cons_s:cons_t:cons_b2_0(+(1, n2899_0)))) ->_IH u(*3_0) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (22) BOUNDS(1, INF)