/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^3)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^3). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 44 ms] (4) CpxRelTRS (5) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] (6) CpxRelTRS (7) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (10) CdtProblem (11) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (12) CdtProblem (13) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CdtProblem (17) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (18) CdtProblem (19) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CdtProblem (21) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 117 ms] (22) CdtProblem (23) CdtRuleRemovalProof [UPPER BOUND(ADD(n^3)), 77 ms] (24) CdtProblem (25) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (26) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: a(b(x1)) -> b(a(x1)) b(a(x1)) -> a(c(b(x1))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: a(b(x1)) -> b(a(x1)) b(a(x1)) -> a(c(b(x1))) The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: a(b(x1)) -> b(a(x1)) b(a(x1)) -> a(c(b(x1))) The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) NonCtorToCtorProof (UPPER BOUND(ID)) transformed non-ctor to ctor-system ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: a(c_b(x1)) -> b(a(x1)) b(c_a(x1)) -> a(c(b(x1))) The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) a(x0) -> c_a(x0) b(x0) -> c_b(x0) Rewrite Strategy: FULL ---------------------------------------- (7) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS is a non-duplicating overlay system, we have rc = irc. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: a(c_b(x1)) -> b(a(x1)) b(c_a(x1)) -> a(c(b(x1))) The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) a(x0) -> c_a(x0) b(x0) -> c_b(x0) Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) a(z0) -> c_a(z0) a(c_b(z0)) -> b(a(z0)) b(z0) -> c_b(z0) b(c_a(z0)) -> a(c(b(z0))) Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c3(B(encArg(z0)), ENCARG(z0)) ENCODE_A(z0) -> c4(A(encArg(z0)), ENCARG(z0)) ENCODE_B(z0) -> c5(B(encArg(z0)), ENCARG(z0)) ENCODE_C(z0) -> c6(ENCARG(z0)) A(z0) -> c7 A(c_b(z0)) -> c8(B(a(z0)), A(z0)) B(z0) -> c9 B(c_a(z0)) -> c10(A(c(b(z0))), B(z0)) S tuples: A(c_b(z0)) -> c8(B(a(z0)), A(z0)) B(c_a(z0)) -> c10(A(c(b(z0))), B(z0)) K tuples:none Defined Rule Symbols: a_1, b_1, encArg_1, encode_a_1, encode_b_1, encode_c_1 Defined Pair Symbols: ENCARG_1, ENCODE_A_1, ENCODE_B_1, ENCODE_C_1, A_1, B_1 Compound Symbols: c1_1, c2_2, c3_2, c4_2, c5_2, c6_1, c7, c8_2, c9, c10_2 ---------------------------------------- (11) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: ENCODE_C(z0) -> c6(ENCARG(z0)) Removed 2 trailing nodes: B(z0) -> c9 A(z0) -> c7 ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) a(z0) -> c_a(z0) a(c_b(z0)) -> b(a(z0)) b(z0) -> c_b(z0) b(c_a(z0)) -> a(c(b(z0))) Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c3(B(encArg(z0)), ENCARG(z0)) ENCODE_A(z0) -> c4(A(encArg(z0)), ENCARG(z0)) ENCODE_B(z0) -> c5(B(encArg(z0)), ENCARG(z0)) A(c_b(z0)) -> c8(B(a(z0)), A(z0)) B(c_a(z0)) -> c10(A(c(b(z0))), B(z0)) S tuples: A(c_b(z0)) -> c8(B(a(z0)), A(z0)) B(c_a(z0)) -> c10(A(c(b(z0))), B(z0)) K tuples:none Defined Rule Symbols: a_1, b_1, encArg_1, encode_a_1, encode_b_1, encode_c_1 Defined Pair Symbols: ENCARG_1, ENCODE_A_1, ENCODE_B_1, A_1, B_1 Compound Symbols: c1_1, c2_2, c3_2, c4_2, c5_2, c8_2, c10_2 ---------------------------------------- (13) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) a(z0) -> c_a(z0) a(c_b(z0)) -> b(a(z0)) b(z0) -> c_b(z0) b(c_a(z0)) -> a(c(b(z0))) Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c3(B(encArg(z0)), ENCARG(z0)) ENCODE_A(z0) -> c4(A(encArg(z0)), ENCARG(z0)) ENCODE_B(z0) -> c5(B(encArg(z0)), ENCARG(z0)) A(c_b(z0)) -> c8(B(a(z0)), A(z0)) B(c_a(z0)) -> c10(B(z0)) S tuples: A(c_b(z0)) -> c8(B(a(z0)), A(z0)) B(c_a(z0)) -> c10(B(z0)) K tuples:none Defined Rule Symbols: a_1, b_1, encArg_1, encode_a_1, encode_b_1, encode_c_1 Defined Pair Symbols: ENCARG_1, ENCODE_A_1, ENCODE_B_1, A_1, B_1 Compound Symbols: c1_1, c2_2, c3_2, c4_2, c5_2, c8_2, c10_1 ---------------------------------------- (15) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) a(z0) -> c_a(z0) a(c_b(z0)) -> b(a(z0)) b(z0) -> c_b(z0) b(c_a(z0)) -> a(c(b(z0))) Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c3(B(encArg(z0)), ENCARG(z0)) A(c_b(z0)) -> c8(B(a(z0)), A(z0)) B(c_a(z0)) -> c10(B(z0)) ENCODE_A(z0) -> c6(A(encArg(z0))) ENCODE_A(z0) -> c6(ENCARG(z0)) ENCODE_B(z0) -> c6(B(encArg(z0))) ENCODE_B(z0) -> c6(ENCARG(z0)) S tuples: A(c_b(z0)) -> c8(B(a(z0)), A(z0)) B(c_a(z0)) -> c10(B(z0)) K tuples:none Defined Rule Symbols: a_1, b_1, encArg_1, encode_a_1, encode_b_1, encode_c_1 Defined Pair Symbols: ENCARG_1, A_1, B_1, ENCODE_A_1, ENCODE_B_1 Compound Symbols: c1_1, c2_2, c3_2, c8_2, c10_1, c6_1 ---------------------------------------- (17) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_A(z0) -> c6(ENCARG(z0)) ENCODE_B(z0) -> c6(ENCARG(z0)) ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) a(z0) -> c_a(z0) a(c_b(z0)) -> b(a(z0)) b(z0) -> c_b(z0) b(c_a(z0)) -> a(c(b(z0))) Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c3(B(encArg(z0)), ENCARG(z0)) A(c_b(z0)) -> c8(B(a(z0)), A(z0)) B(c_a(z0)) -> c10(B(z0)) ENCODE_A(z0) -> c6(A(encArg(z0))) ENCODE_B(z0) -> c6(B(encArg(z0))) S tuples: A(c_b(z0)) -> c8(B(a(z0)), A(z0)) B(c_a(z0)) -> c10(B(z0)) K tuples:none Defined Rule Symbols: a_1, b_1, encArg_1, encode_a_1, encode_b_1, encode_c_1 Defined Pair Symbols: ENCARG_1, A_1, B_1, ENCODE_A_1, ENCODE_B_1 Compound Symbols: c1_1, c2_2, c3_2, c8_2, c10_1, c6_1 ---------------------------------------- (19) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) a(z0) -> c_a(z0) a(c_b(z0)) -> b(a(z0)) b(z0) -> c_b(z0) b(c_a(z0)) -> a(c(b(z0))) Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c3(B(encArg(z0)), ENCARG(z0)) A(c_b(z0)) -> c8(B(a(z0)), A(z0)) B(c_a(z0)) -> c10(B(z0)) ENCODE_A(z0) -> c6(A(encArg(z0))) ENCODE_B(z0) -> c6(B(encArg(z0))) S tuples: A(c_b(z0)) -> c8(B(a(z0)), A(z0)) B(c_a(z0)) -> c10(B(z0)) K tuples:none Defined Rule Symbols: encArg_1, a_1, b_1 Defined Pair Symbols: ENCARG_1, A_1, B_1, ENCODE_A_1, ENCODE_B_1 Compound Symbols: c1_1, c2_2, c3_2, c8_2, c10_1, c6_1 ---------------------------------------- (21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. A(c_b(z0)) -> c8(B(a(z0)), A(z0)) We considered the (Usable) Rules: a(z0) -> c_a(z0) encArg(c(z0)) -> c(encArg(z0)) b(z0) -> c_b(z0) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) a(c_b(z0)) -> b(a(z0)) b(c_a(z0)) -> a(c(b(z0))) And the Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c3(B(encArg(z0)), ENCARG(z0)) A(c_b(z0)) -> c8(B(a(z0)), A(z0)) B(c_a(z0)) -> c10(B(z0)) ENCODE_A(z0) -> c6(A(encArg(z0))) ENCODE_B(z0) -> c6(B(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A(x_1)) = [2]x_1 POL(B(x_1)) = [1] POL(ENCARG(x_1)) = [2]x_1^2 POL(ENCODE_A(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(ENCODE_B(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(a(x_1)) = x_1 POL(b(x_1)) = [1] + x_1 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c10(x_1)) = x_1 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c6(x_1)) = x_1 POL(c8(x_1, x_2)) = x_1 + x_2 POL(c_a(x_1)) = x_1 POL(c_b(x_1)) = [1] + x_1 POL(cons_a(x_1)) = [1] + x_1 POL(cons_b(x_1)) = [2] + x_1 POL(encArg(x_1)) = x_1 ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) a(z0) -> c_a(z0) a(c_b(z0)) -> b(a(z0)) b(z0) -> c_b(z0) b(c_a(z0)) -> a(c(b(z0))) Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c3(B(encArg(z0)), ENCARG(z0)) A(c_b(z0)) -> c8(B(a(z0)), A(z0)) B(c_a(z0)) -> c10(B(z0)) ENCODE_A(z0) -> c6(A(encArg(z0))) ENCODE_B(z0) -> c6(B(encArg(z0))) S tuples: B(c_a(z0)) -> c10(B(z0)) K tuples: A(c_b(z0)) -> c8(B(a(z0)), A(z0)) Defined Rule Symbols: encArg_1, a_1, b_1 Defined Pair Symbols: ENCARG_1, A_1, B_1, ENCODE_A_1, ENCODE_B_1 Compound Symbols: c1_1, c2_2, c3_2, c8_2, c10_1, c6_1 ---------------------------------------- (23) CdtRuleRemovalProof (UPPER BOUND(ADD(n^3))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. B(c_a(z0)) -> c10(B(z0)) We considered the (Usable) Rules: a(z0) -> c_a(z0) encArg(c(z0)) -> c(encArg(z0)) b(z0) -> c_b(z0) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) a(c_b(z0)) -> b(a(z0)) b(c_a(z0)) -> a(c(b(z0))) And the Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c3(B(encArg(z0)), ENCARG(z0)) A(c_b(z0)) -> c8(B(a(z0)), A(z0)) B(c_a(z0)) -> c10(B(z0)) ENCODE_A(z0) -> c6(A(encArg(z0))) ENCODE_B(z0) -> c6(B(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A(x_1)) = [1] + x_1^2 POL(B(x_1)) = x_1 POL(ENCARG(x_1)) = x_1^3 POL(ENCODE_A(x_1)) = [1] + x_1^2 POL(ENCODE_B(x_1)) = x_1 POL(a(x_1)) = [1] + x_1 POL(b(x_1)) = [1] + x_1 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c10(x_1)) = x_1 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c6(x_1)) = x_1 POL(c8(x_1, x_2)) = x_1 + x_2 POL(c_a(x_1)) = [1] + x_1 POL(c_b(x_1)) = [1] + x_1 POL(cons_a(x_1)) = [1] + x_1 POL(cons_b(x_1)) = [1] + x_1 POL(encArg(x_1)) = x_1 ---------------------------------------- (24) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_b(z0)) -> b(encArg(z0)) a(z0) -> c_a(z0) a(c_b(z0)) -> b(a(z0)) b(z0) -> c_b(z0) b(c_a(z0)) -> a(c(b(z0))) Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_b(z0)) -> c3(B(encArg(z0)), ENCARG(z0)) A(c_b(z0)) -> c8(B(a(z0)), A(z0)) B(c_a(z0)) -> c10(B(z0)) ENCODE_A(z0) -> c6(A(encArg(z0))) ENCODE_B(z0) -> c6(B(encArg(z0))) S tuples:none K tuples: A(c_b(z0)) -> c8(B(a(z0)), A(z0)) B(c_a(z0)) -> c10(B(z0)) Defined Rule Symbols: encArg_1, a_1, b_1 Defined Pair Symbols: ENCARG_1, A_1, B_1, ENCODE_A_1, ENCODE_B_1 Compound Symbols: c1_1, c2_2, c3_2, c8_2, c10_1, c6_1 ---------------------------------------- (25) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (26) BOUNDS(1, 1)