/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 183 ms] (4) CpxRelTRS (5) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxWeightedTrs (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedTrs (11) CompletionProof [UPPER BOUND(ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxTypedWeightedCompleteTrs (15) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 1 ms] (16) CpxRNTS (17) InliningProof [UPPER BOUND(ID), 497 ms] (18) CpxRNTS (19) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CpxRNTS (21) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 173 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 35 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 50 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 2 ms] (34) CpxRNTS (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 86 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 21 ms] (40) CpxRNTS (41) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 106 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 21 ms] (46) CpxRNTS (47) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 423 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 217 ms] (52) CpxRNTS (53) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (54) CpxRNTS (55) IntTrsBoundProof [UPPER BOUND(ID), 461 ms] (56) CpxRNTS (57) IntTrsBoundProof [UPPER BOUND(ID), 371 ms] (58) CpxRNTS (59) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (60) CpxRNTS (61) IntTrsBoundProof [UPPER BOUND(ID), 297 ms] (62) CpxRNTS (63) IntTrsBoundProof [UPPER BOUND(ID), 6 ms] (64) CpxRNTS (65) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (66) CpxRNTS (67) IntTrsBoundProof [UPPER BOUND(ID), 167 ms] (68) CpxRNTS (69) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (70) CpxRNTS (71) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (72) CpxRNTS (73) IntTrsBoundProof [UPPER BOUND(ID), 148 ms] (74) CpxRNTS (75) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (76) CpxRNTS (77) FinalProof [FINISHED, 0 ms] (78) BOUNDS(1, n^2) (79) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (80) TRS for Loop Detection (81) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (82) BEST (83) proven lower bound (84) LowerBoundPropagationProof [FINISHED, 0 ms] (85) BOUNDS(n^1, INF) (86) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: not(true) -> false not(false) -> true evenodd(x, 0) -> not(evenodd(x, s(0))) evenodd(0, s(0)) -> false evenodd(s(x), s(0)) -> evenodd(x, 0) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(true) -> true encArg(false) -> false encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_evenodd(x_1, x_2)) -> evenodd(encArg(x_1), encArg(x_2)) encode_not(x_1) -> not(encArg(x_1)) encode_true -> true encode_false -> false encode_evenodd(x_1, x_2) -> evenodd(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: not(true) -> false not(false) -> true evenodd(x, 0) -> not(evenodd(x, s(0))) evenodd(0, s(0)) -> false evenodd(s(x), s(0)) -> evenodd(x, 0) The (relative) TRS S consists of the following rules: encArg(true) -> true encArg(false) -> false encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_evenodd(x_1, x_2)) -> evenodd(encArg(x_1), encArg(x_2)) encode_not(x_1) -> not(encArg(x_1)) encode_true -> true encode_false -> false encode_evenodd(x_1, x_2) -> evenodd(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: not(true) -> false not(false) -> true evenodd(x, 0) -> not(evenodd(x, s(0))) evenodd(0, s(0)) -> false evenodd(s(x), s(0)) -> evenodd(x, 0) The (relative) TRS S consists of the following rules: encArg(true) -> true encArg(false) -> false encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_evenodd(x_1, x_2)) -> evenodd(encArg(x_1), encArg(x_2)) encode_not(x_1) -> not(encArg(x_1)) encode_true -> true encode_false -> false encode_evenodd(x_1, x_2) -> evenodd(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS is a non-duplicating overlay system, we have rc = irc. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: not(true) -> false not(false) -> true evenodd(x, 0) -> not(evenodd(x, s(0))) evenodd(0, s(0)) -> false evenodd(s(x), s(0)) -> evenodd(x, 0) The (relative) TRS S consists of the following rules: encArg(true) -> true encArg(false) -> false encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_evenodd(x_1, x_2)) -> evenodd(encArg(x_1), encArg(x_2)) encode_not(x_1) -> not(encArg(x_1)) encode_true -> true encode_false -> false encode_evenodd(x_1, x_2) -> evenodd(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: not(true) -> false [1] not(false) -> true [1] evenodd(x, 0) -> not(evenodd(x, s(0))) [1] evenodd(0, s(0)) -> false [1] evenodd(s(x), s(0)) -> evenodd(x, 0) [1] encArg(true) -> true [0] encArg(false) -> false [0] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_not(x_1)) -> not(encArg(x_1)) [0] encArg(cons_evenodd(x_1, x_2)) -> evenodd(encArg(x_1), encArg(x_2)) [0] encode_not(x_1) -> not(encArg(x_1)) [0] encode_true -> true [0] encode_false -> false [0] encode_evenodd(x_1, x_2) -> evenodd(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: not(true) -> false [1] not(false) -> true [1] evenodd(x, 0) -> not(evenodd(x, s(0))) [1] evenodd(0, s(0)) -> false [1] evenodd(s(x), s(0)) -> evenodd(x, 0) [1] encArg(true) -> true [0] encArg(false) -> false [0] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_not(x_1)) -> not(encArg(x_1)) [0] encArg(cons_evenodd(x_1, x_2)) -> evenodd(encArg(x_1), encArg(x_2)) [0] encode_not(x_1) -> not(encArg(x_1)) [0] encode_true -> true [0] encode_false -> false [0] encode_evenodd(x_1, x_2) -> evenodd(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] The TRS has the following type information: not :: true:false:0:s:cons_not:cons_evenodd -> true:false:0:s:cons_not:cons_evenodd true :: true:false:0:s:cons_not:cons_evenodd false :: true:false:0:s:cons_not:cons_evenodd evenodd :: true:false:0:s:cons_not:cons_evenodd -> true:false:0:s:cons_not:cons_evenodd -> true:false:0:s:cons_not:cons_evenodd 0 :: true:false:0:s:cons_not:cons_evenodd s :: true:false:0:s:cons_not:cons_evenodd -> true:false:0:s:cons_not:cons_evenodd encArg :: true:false:0:s:cons_not:cons_evenodd -> true:false:0:s:cons_not:cons_evenodd cons_not :: true:false:0:s:cons_not:cons_evenodd -> true:false:0:s:cons_not:cons_evenodd cons_evenodd :: true:false:0:s:cons_not:cons_evenodd -> true:false:0:s:cons_not:cons_evenodd -> true:false:0:s:cons_not:cons_evenodd encode_not :: true:false:0:s:cons_not:cons_evenodd -> true:false:0:s:cons_not:cons_evenodd encode_true :: true:false:0:s:cons_not:cons_evenodd encode_false :: true:false:0:s:cons_not:cons_evenodd encode_evenodd :: true:false:0:s:cons_not:cons_evenodd -> true:false:0:s:cons_not:cons_evenodd -> true:false:0:s:cons_not:cons_evenodd encode_0 :: true:false:0:s:cons_not:cons_evenodd encode_s :: true:false:0:s:cons_not:cons_evenodd -> true:false:0:s:cons_not:cons_evenodd Rewrite Strategy: INNERMOST ---------------------------------------- (11) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: evenodd_2 not_1 encArg_1 encode_not_1 encode_true encode_false encode_evenodd_2 encode_0 encode_s_1 Due to the following rules being added: encArg(v0) -> null_encArg [0] encode_not(v0) -> null_encode_not [0] encode_true -> null_encode_true [0] encode_false -> null_encode_false [0] encode_evenodd(v0, v1) -> null_encode_evenodd [0] encode_0 -> null_encode_0 [0] encode_s(v0) -> null_encode_s [0] evenodd(v0, v1) -> null_evenodd [0] not(v0) -> null_not [0] And the following fresh constants: null_encArg, null_encode_not, null_encode_true, null_encode_false, null_encode_evenodd, null_encode_0, null_encode_s, null_evenodd, null_not ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: not(true) -> false [1] not(false) -> true [1] evenodd(x, 0) -> not(evenodd(x, s(0))) [1] evenodd(0, s(0)) -> false [1] evenodd(s(x), s(0)) -> evenodd(x, 0) [1] encArg(true) -> true [0] encArg(false) -> false [0] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_not(x_1)) -> not(encArg(x_1)) [0] encArg(cons_evenodd(x_1, x_2)) -> evenodd(encArg(x_1), encArg(x_2)) [0] encode_not(x_1) -> not(encArg(x_1)) [0] encode_true -> true [0] encode_false -> false [0] encode_evenodd(x_1, x_2) -> evenodd(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] encArg(v0) -> null_encArg [0] encode_not(v0) -> null_encode_not [0] encode_true -> null_encode_true [0] encode_false -> null_encode_false [0] encode_evenodd(v0, v1) -> null_encode_evenodd [0] encode_0 -> null_encode_0 [0] encode_s(v0) -> null_encode_s [0] evenodd(v0, v1) -> null_evenodd [0] not(v0) -> null_not [0] The TRS has the following type information: not :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not -> true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not true :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not false :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not evenodd :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not -> true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not -> true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not 0 :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not s :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not -> true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not encArg :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not -> true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not cons_not :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not -> true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not cons_evenodd :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not -> true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not -> true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not encode_not :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not -> true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not encode_true :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not encode_false :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not encode_evenodd :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not -> true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not -> true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not encode_0 :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not encode_s :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not -> true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not null_encArg :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not null_encode_not :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not null_encode_true :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not null_encode_false :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not null_encode_evenodd :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not null_encode_0 :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not null_encode_s :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not null_evenodd :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not null_not :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not Rewrite Strategy: INNERMOST ---------------------------------------- (13) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (14) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: not(true) -> false [1] not(false) -> true [1] evenodd(0, 0) -> not(false) [2] evenodd(s(x'), 0) -> not(evenodd(x', 0)) [2] evenodd(x, 0) -> not(null_evenodd) [1] evenodd(0, s(0)) -> false [1] evenodd(s(x), s(0)) -> evenodd(x, 0) [1] encArg(true) -> true [0] encArg(false) -> false [0] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_not(true)) -> not(true) [0] encArg(cons_not(false)) -> not(false) [0] encArg(cons_not(0)) -> not(0) [0] encArg(cons_not(s(x_1'))) -> not(s(encArg(x_1'))) [0] encArg(cons_not(cons_not(x_1''))) -> not(not(encArg(x_1''))) [0] encArg(cons_not(cons_evenodd(x_11, x_2'))) -> not(evenodd(encArg(x_11), encArg(x_2'))) [0] encArg(cons_not(x_1)) -> not(null_encArg) [0] encArg(cons_evenodd(x_1, x_2)) -> evenodd(encArg(x_1), encArg(x_2)) [0] encode_not(true) -> not(true) [0] encode_not(false) -> not(false) [0] encode_not(0) -> not(0) [0] encode_not(s(x_126)) -> not(s(encArg(x_126))) [0] encode_not(cons_not(x_127)) -> not(not(encArg(x_127))) [0] encode_not(cons_evenodd(x_128, x_28)) -> not(evenodd(encArg(x_128), encArg(x_28))) [0] encode_not(x_1) -> not(null_encArg) [0] encode_true -> true [0] encode_false -> false [0] encode_evenodd(x_1, x_2) -> evenodd(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] encArg(v0) -> null_encArg [0] encode_not(v0) -> null_encode_not [0] encode_true -> null_encode_true [0] encode_false -> null_encode_false [0] encode_evenodd(v0, v1) -> null_encode_evenodd [0] encode_0 -> null_encode_0 [0] encode_s(v0) -> null_encode_s [0] evenodd(v0, v1) -> null_evenodd [0] not(v0) -> null_not [0] The TRS has the following type information: not :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not -> true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not true :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not false :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not evenodd :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not -> true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not -> true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not 0 :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not s :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not -> true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not encArg :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not -> true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not cons_not :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not -> true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not cons_evenodd :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not -> true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not -> true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not encode_not :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not -> true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not encode_true :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not encode_false :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not encode_evenodd :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not -> true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not -> true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not encode_0 :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not encode_s :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not -> true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not null_encArg :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not null_encode_not :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not null_encode_true :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not null_encode_false :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not null_encode_evenodd :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not null_encode_0 :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not null_encode_s :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not null_evenodd :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not null_not :: true:false:0:s:cons_not:cons_evenodd:null_encArg:null_encode_not:null_encode_true:null_encode_false:null_encode_evenodd:null_encode_0:null_encode_s:null_evenodd:null_not Rewrite Strategy: INNERMOST ---------------------------------------- (15) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: true => 2 false => 1 0 => 0 null_encArg => 0 null_encode_not => 0 null_encode_true => 0 null_encode_false => 0 null_encode_evenodd => 0 null_encode_0 => 0 null_encode_s => 0 null_evenodd => 0 null_not => 0 ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> not(not(encArg(x_1''))) :|: z = 1 + (1 + x_1''), x_1'' >= 0 encArg(z) -{ 0 }-> not(evenodd(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> not(2) :|: z = 1 + 2 encArg(z) -{ 0 }-> not(1) :|: z = 1 + 1 encArg(z) -{ 0 }-> not(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> not(0) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> not(1 + encArg(x_1')) :|: z = 1 + (1 + x_1'), x_1' >= 0 encArg(z) -{ 0 }-> evenodd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) :|: z = 1 + x_1, x_1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 0 }-> evenodd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_evenodd(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ 0 }-> not(not(encArg(x_127))) :|: x_127 >= 0, z = 1 + x_127 encode_not(z) -{ 0 }-> not(evenodd(encArg(x_128), encArg(x_28))) :|: x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 0 }-> not(2) :|: z = 2 encode_not(z) -{ 0 }-> not(1) :|: z = 1 encode_not(z) -{ 0 }-> not(0) :|: z = 0 encode_not(z) -{ 0 }-> not(0) :|: x_1 >= 0, z = x_1 encode_not(z) -{ 0 }-> not(1 + encArg(x_126)) :|: z = 1 + x_126, x_126 >= 0 encode_not(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_s(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_s(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 2 }-> not(evenodd(x', 0)) :|: z = 1 + x', x' >= 0, z' = 0 evenodd(z, z') -{ 2 }-> not(1) :|: z = 0, z' = 0 evenodd(z, z') -{ 1 }-> not(0) :|: x >= 0, z = x, z' = 0 evenodd(z, z') -{ 1 }-> evenodd(x, 0) :|: x >= 0, z' = 1 + 0, z = 1 + x evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 ---------------------------------------- (17) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> not(not(encArg(x_1''))) :|: z = 1 + (1 + x_1''), x_1'' >= 0 encArg(z) -{ 0 }-> not(evenodd(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> not(1 + encArg(x_1')) :|: z = 1 + (1 + x_1'), x_1' >= 0 encArg(z) -{ 0 }-> evenodd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + x_1, x_1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) :|: z = 1 + x_1, x_1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 0 }-> evenodd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_evenodd(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ 0 }-> not(not(encArg(x_127))) :|: x_127 >= 0, z = 1 + x_127 encode_not(z) -{ 0 }-> not(evenodd(encArg(x_128), encArg(x_28))) :|: x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 0 }-> not(1 + encArg(x_126)) :|: z = 1 + x_126, x_126 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: x_1 >= 0, z = x_1, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_s(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 2 }-> not(evenodd(x', 0)) :|: z = 1 + x', x' >= 0, z' = 0 evenodd(z, z') -{ 1 }-> evenodd(x, 0) :|: x >= 0, z' = 1 + 0, z = 1 + x evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: x >= 0, z = x, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 ---------------------------------------- (19) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(evenodd(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> not(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> evenodd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 0 }-> evenodd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(evenodd(encArg(x_128), encArg(x_28))) :|: x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 0 }-> not(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 2 }-> not(evenodd(z - 1, 0)) :|: z - 1 >= 0, z' = 0 evenodd(z, z') -{ 1 }-> evenodd(z - 1, 0) :|: z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 ---------------------------------------- (21) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { not } { encode_0 } { encode_false } { encode_true } { evenodd } { encArg } { encode_not } { encode_evenodd } { encode_s } ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(evenodd(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> not(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> evenodd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 0 }-> evenodd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(evenodd(encArg(x_128), encArg(x_28))) :|: x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 0 }-> not(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 2 }-> not(evenodd(z - 1, 0)) :|: z - 1 >= 0, z' = 0 evenodd(z, z') -{ 1 }-> evenodd(z - 1, 0) :|: z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {not}, {encode_0}, {encode_false}, {encode_true}, {evenodd}, {encArg}, {encode_not}, {encode_evenodd}, {encode_s} ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(evenodd(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> not(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> evenodd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 0 }-> evenodd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(evenodd(encArg(x_128), encArg(x_28))) :|: x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 0 }-> not(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 2 }-> not(evenodd(z - 1, 0)) :|: z - 1 >= 0, z' = 0 evenodd(z, z') -{ 1 }-> evenodd(z - 1, 0) :|: z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {not}, {encode_0}, {encode_false}, {encode_true}, {evenodd}, {encArg}, {encode_not}, {encode_evenodd}, {encode_s} ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: not after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(evenodd(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> not(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> evenodd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 0 }-> evenodd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(evenodd(encArg(x_128), encArg(x_28))) :|: x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 0 }-> not(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 2 }-> not(evenodd(z - 1, 0)) :|: z - 1 >= 0, z' = 0 evenodd(z, z') -{ 1 }-> evenodd(z - 1, 0) :|: z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {not}, {encode_0}, {encode_false}, {encode_true}, {evenodd}, {encArg}, {encode_not}, {encode_evenodd}, {encode_s} Previous analysis results are: not: runtime: ?, size: O(1) [2] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: not after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(evenodd(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> not(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> evenodd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 0 }-> evenodd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(evenodd(encArg(x_128), encArg(x_28))) :|: x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 0 }-> not(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 2 }-> not(evenodd(z - 1, 0)) :|: z - 1 >= 0, z' = 0 evenodd(z, z') -{ 1 }-> evenodd(z - 1, 0) :|: z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_0}, {encode_false}, {encode_true}, {evenodd}, {encArg}, {encode_not}, {encode_evenodd}, {encode_s} Previous analysis results are: not: runtime: O(1) [1], size: O(1) [2] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(evenodd(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> not(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> evenodd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 0 }-> evenodd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(evenodd(encArg(x_128), encArg(x_28))) :|: x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 0 }-> not(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 2 }-> not(evenodd(z - 1, 0)) :|: z - 1 >= 0, z' = 0 evenodd(z, z') -{ 1 }-> evenodd(z - 1, 0) :|: z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_0}, {encode_false}, {encode_true}, {evenodd}, {encArg}, {encode_not}, {encode_evenodd}, {encode_s} Previous analysis results are: not: runtime: O(1) [1], size: O(1) [2] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(evenodd(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> not(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> evenodd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 0 }-> evenodd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(evenodd(encArg(x_128), encArg(x_28))) :|: x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 0 }-> not(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 2 }-> not(evenodd(z - 1, 0)) :|: z - 1 >= 0, z' = 0 evenodd(z, z') -{ 1 }-> evenodd(z - 1, 0) :|: z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_0}, {encode_false}, {encode_true}, {evenodd}, {encArg}, {encode_not}, {encode_evenodd}, {encode_s} Previous analysis results are: not: runtime: O(1) [1], size: O(1) [2] encode_0: runtime: ?, size: O(1) [0] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(evenodd(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> not(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> evenodd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 0 }-> evenodd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(evenodd(encArg(x_128), encArg(x_28))) :|: x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 0 }-> not(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 2 }-> not(evenodd(z - 1, 0)) :|: z - 1 >= 0, z' = 0 evenodd(z, z') -{ 1 }-> evenodd(z - 1, 0) :|: z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_false}, {encode_true}, {evenodd}, {encArg}, {encode_not}, {encode_evenodd}, {encode_s} Previous analysis results are: not: runtime: O(1) [1], size: O(1) [2] encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (35) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(evenodd(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> not(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> evenodd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 0 }-> evenodd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(evenodd(encArg(x_128), encArg(x_28))) :|: x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 0 }-> not(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 2 }-> not(evenodd(z - 1, 0)) :|: z - 1 >= 0, z' = 0 evenodd(z, z') -{ 1 }-> evenodd(z - 1, 0) :|: z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_false}, {encode_true}, {evenodd}, {encArg}, {encode_not}, {encode_evenodd}, {encode_s} Previous analysis results are: not: runtime: O(1) [1], size: O(1) [2] encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_false after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(evenodd(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> not(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> evenodd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 0 }-> evenodd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(evenodd(encArg(x_128), encArg(x_28))) :|: x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 0 }-> not(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 2 }-> not(evenodd(z - 1, 0)) :|: z - 1 >= 0, z' = 0 evenodd(z, z') -{ 1 }-> evenodd(z - 1, 0) :|: z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_false}, {encode_true}, {evenodd}, {encArg}, {encode_not}, {encode_evenodd}, {encode_s} Previous analysis results are: not: runtime: O(1) [1], size: O(1) [2] encode_0: runtime: O(1) [0], size: O(1) [0] encode_false: runtime: ?, size: O(1) [1] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_false after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(evenodd(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> not(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> evenodd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 0 }-> evenodd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(evenodd(encArg(x_128), encArg(x_28))) :|: x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 0 }-> not(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 2 }-> not(evenodd(z - 1, 0)) :|: z - 1 >= 0, z' = 0 evenodd(z, z') -{ 1 }-> evenodd(z - 1, 0) :|: z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_true}, {evenodd}, {encArg}, {encode_not}, {encode_evenodd}, {encode_s} Previous analysis results are: not: runtime: O(1) [1], size: O(1) [2] encode_0: runtime: O(1) [0], size: O(1) [0] encode_false: runtime: O(1) [0], size: O(1) [1] ---------------------------------------- (41) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(evenodd(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> not(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> evenodd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 0 }-> evenodd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(evenodd(encArg(x_128), encArg(x_28))) :|: x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 0 }-> not(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 2 }-> not(evenodd(z - 1, 0)) :|: z - 1 >= 0, z' = 0 evenodd(z, z') -{ 1 }-> evenodd(z - 1, 0) :|: z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_true}, {evenodd}, {encArg}, {encode_not}, {encode_evenodd}, {encode_s} Previous analysis results are: not: runtime: O(1) [1], size: O(1) [2] encode_0: runtime: O(1) [0], size: O(1) [0] encode_false: runtime: O(1) [0], size: O(1) [1] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_true after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(evenodd(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> not(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> evenodd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 0 }-> evenodd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(evenodd(encArg(x_128), encArg(x_28))) :|: x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 0 }-> not(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 2 }-> not(evenodd(z - 1, 0)) :|: z - 1 >= 0, z' = 0 evenodd(z, z') -{ 1 }-> evenodd(z - 1, 0) :|: z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_true}, {evenodd}, {encArg}, {encode_not}, {encode_evenodd}, {encode_s} Previous analysis results are: not: runtime: O(1) [1], size: O(1) [2] encode_0: runtime: O(1) [0], size: O(1) [0] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: ?, size: O(1) [2] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_true after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(evenodd(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> not(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> evenodd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 0 }-> evenodd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(evenodd(encArg(x_128), encArg(x_28))) :|: x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 0 }-> not(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 2 }-> not(evenodd(z - 1, 0)) :|: z - 1 >= 0, z' = 0 evenodd(z, z') -{ 1 }-> evenodd(z - 1, 0) :|: z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {evenodd}, {encArg}, {encode_not}, {encode_evenodd}, {encode_s} Previous analysis results are: not: runtime: O(1) [1], size: O(1) [2] encode_0: runtime: O(1) [0], size: O(1) [0] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ---------------------------------------- (47) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(evenodd(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> not(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> evenodd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 0 }-> evenodd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(evenodd(encArg(x_128), encArg(x_28))) :|: x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 0 }-> not(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 2 }-> not(evenodd(z - 1, 0)) :|: z - 1 >= 0, z' = 0 evenodd(z, z') -{ 1 }-> evenodd(z - 1, 0) :|: z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {evenodd}, {encArg}, {encode_not}, {encode_evenodd}, {encode_s} Previous analysis results are: not: runtime: O(1) [1], size: O(1) [2] encode_0: runtime: O(1) [0], size: O(1) [0] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: evenodd after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(evenodd(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> not(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> evenodd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 0 }-> evenodd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(evenodd(encArg(x_128), encArg(x_28))) :|: x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 0 }-> not(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 2 }-> not(evenodd(z - 1, 0)) :|: z - 1 >= 0, z' = 0 evenodd(z, z') -{ 1 }-> evenodd(z - 1, 0) :|: z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {evenodd}, {encArg}, {encode_not}, {encode_evenodd}, {encode_s} Previous analysis results are: not: runtime: O(1) [1], size: O(1) [2] encode_0: runtime: O(1) [0], size: O(1) [0] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] evenodd: runtime: ?, size: O(1) [2] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: evenodd after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 7 + 3*z ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(evenodd(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> not(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> evenodd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 0 }-> evenodd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(evenodd(encArg(x_128), encArg(x_28))) :|: x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 0 }-> not(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 2 }-> not(evenodd(z - 1, 0)) :|: z - 1 >= 0, z' = 0 evenodd(z, z') -{ 1 }-> evenodd(z - 1, 0) :|: z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encArg}, {encode_not}, {encode_evenodd}, {encode_s} Previous analysis results are: not: runtime: O(1) [1], size: O(1) [2] encode_0: runtime: O(1) [0], size: O(1) [0] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] evenodd: runtime: O(n^1) [7 + 3*z], size: O(1) [2] ---------------------------------------- (53) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(evenodd(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> not(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> evenodd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 0 }-> evenodd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(evenodd(encArg(x_128), encArg(x_28))) :|: x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 0 }-> not(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 5 + 3*z }-> s :|: s >= 0, s <= 2, z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 7 + 3*z }-> s'' :|: s' >= 0, s' <= 2, s'' >= 0, s'' <= 2, z - 1 >= 0, z' = 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encArg}, {encode_not}, {encode_evenodd}, {encode_s} Previous analysis results are: not: runtime: O(1) [1], size: O(1) [2] encode_0: runtime: O(1) [0], size: O(1) [0] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] evenodd: runtime: O(n^1) [7 + 3*z], size: O(1) [2] ---------------------------------------- (55) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(evenodd(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> not(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> evenodd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 0 }-> evenodd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(evenodd(encArg(x_128), encArg(x_28))) :|: x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 0 }-> not(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 5 + 3*z }-> s :|: s >= 0, s <= 2, z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 7 + 3*z }-> s'' :|: s' >= 0, s' <= 2, s'' >= 0, s'' <= 2, z - 1 >= 0, z' = 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encArg}, {encode_not}, {encode_evenodd}, {encode_s} Previous analysis results are: not: runtime: O(1) [1], size: O(1) [2] encode_0: runtime: O(1) [0], size: O(1) [0] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] evenodd: runtime: O(n^1) [7 + 3*z], size: O(1) [2] encArg: runtime: ?, size: O(n^1) [2 + z] ---------------------------------------- (57) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + 10*z + 3*z^2 ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> not(not(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> not(evenodd(encArg(x_11), encArg(x_2'))) :|: x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 0 }-> not(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> evenodd(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 0 }-> evenodd(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ 0 }-> not(not(encArg(z - 1))) :|: z - 1 >= 0 encode_not(z) -{ 0 }-> not(evenodd(encArg(x_128), encArg(x_28))) :|: x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 0 }-> not(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 5 + 3*z }-> s :|: s >= 0, s <= 2, z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 7 + 3*z }-> s'' :|: s' >= 0, s' <= 2, s'' >= 0, s'' <= 2, z - 1 >= 0, z' = 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_not}, {encode_evenodd}, {encode_s} Previous analysis results are: not: runtime: O(1) [1], size: O(1) [2] encode_0: runtime: O(1) [0], size: O(1) [0] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] evenodd: runtime: O(n^1) [7 + 3*z], size: O(1) [2] encArg: runtime: O(n^2) [1 + 10*z + 3*z^2], size: O(n^1) [2 + z] ---------------------------------------- (59) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ -6 + -2*z + 3*z^2 }-> s10 :|: s9 >= 0, s9 <= z - 2 + 2, s10 >= 0, s10 <= 2, z - 2 >= 0 encArg(z) -{ -5 + -2*z + 3*z^2 }-> s13 :|: s11 >= 0, s11 <= z - 2 + 2, s12 >= 0, s12 <= 2, s13 >= 0, s13 <= 2, z - 2 >= 0 encArg(z) -{ 10 + 3*s14 + 10*x_11 + 3*x_11^2 + 10*x_2' + 3*x_2'^2 }-> s17 :|: s14 >= 0, s14 <= x_11 + 2, s15 >= 0, s15 <= x_2' + 2, s16 >= 0, s16 <= 2, s17 >= 0, s17 <= 2, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 9 + 3*s2 + 10*x_1 + 3*x_1^2 + 10*x_2 + 3*x_2^2 }-> s4 :|: s2 >= 0, s2 <= x_1 + 2, s3 >= 0, s3 <= x_2 + 2, s4 >= 0, s4 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ -6 + 4*z + 3*z^2 }-> 1 + s1 :|: s1 >= 0, s1 <= z - 1 + 2, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 9 + 3*s5 + 10*z + 3*z^2 + 10*z' + 3*z'^2 }-> s7 :|: s5 >= 0, s5 <= z + 2, s6 >= 0, s6 <= z' + 2, s7 >= 0, s7 <= 2, z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ -5 + 4*z + 3*z^2 }-> s19 :|: s18 >= 0, s18 <= z - 1 + 2, s19 >= 0, s19 <= 2, z - 1 >= 0 encode_not(z) -{ -4 + 4*z + 3*z^2 }-> s22 :|: s20 >= 0, s20 <= z - 1 + 2, s21 >= 0, s21 <= 2, s22 >= 0, s22 <= 2, z - 1 >= 0 encode_not(z) -{ 10 + 3*s23 + 10*x_128 + 3*x_128^2 + 10*x_28 + 3*x_28^2 }-> s26 :|: s23 >= 0, s23 <= x_128 + 2, s24 >= 0, s24 <= x_28 + 2, s25 >= 0, s25 <= 2, s26 >= 0, s26 <= 2, x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 1 + 10*z + 3*z^2 }-> 1 + s8 :|: s8 >= 0, s8 <= z + 2, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 5 + 3*z }-> s :|: s >= 0, s <= 2, z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 7 + 3*z }-> s'' :|: s' >= 0, s' <= 2, s'' >= 0, s'' <= 2, z - 1 >= 0, z' = 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_not}, {encode_evenodd}, {encode_s} Previous analysis results are: not: runtime: O(1) [1], size: O(1) [2] encode_0: runtime: O(1) [0], size: O(1) [0] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] evenodd: runtime: O(n^1) [7 + 3*z], size: O(1) [2] encArg: runtime: O(n^2) [1 + 10*z + 3*z^2], size: O(n^1) [2 + z] ---------------------------------------- (61) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_not after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ -6 + -2*z + 3*z^2 }-> s10 :|: s9 >= 0, s9 <= z - 2 + 2, s10 >= 0, s10 <= 2, z - 2 >= 0 encArg(z) -{ -5 + -2*z + 3*z^2 }-> s13 :|: s11 >= 0, s11 <= z - 2 + 2, s12 >= 0, s12 <= 2, s13 >= 0, s13 <= 2, z - 2 >= 0 encArg(z) -{ 10 + 3*s14 + 10*x_11 + 3*x_11^2 + 10*x_2' + 3*x_2'^2 }-> s17 :|: s14 >= 0, s14 <= x_11 + 2, s15 >= 0, s15 <= x_2' + 2, s16 >= 0, s16 <= 2, s17 >= 0, s17 <= 2, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 9 + 3*s2 + 10*x_1 + 3*x_1^2 + 10*x_2 + 3*x_2^2 }-> s4 :|: s2 >= 0, s2 <= x_1 + 2, s3 >= 0, s3 <= x_2 + 2, s4 >= 0, s4 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ -6 + 4*z + 3*z^2 }-> 1 + s1 :|: s1 >= 0, s1 <= z - 1 + 2, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 9 + 3*s5 + 10*z + 3*z^2 + 10*z' + 3*z'^2 }-> s7 :|: s5 >= 0, s5 <= z + 2, s6 >= 0, s6 <= z' + 2, s7 >= 0, s7 <= 2, z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ -5 + 4*z + 3*z^2 }-> s19 :|: s18 >= 0, s18 <= z - 1 + 2, s19 >= 0, s19 <= 2, z - 1 >= 0 encode_not(z) -{ -4 + 4*z + 3*z^2 }-> s22 :|: s20 >= 0, s20 <= z - 1 + 2, s21 >= 0, s21 <= 2, s22 >= 0, s22 <= 2, z - 1 >= 0 encode_not(z) -{ 10 + 3*s23 + 10*x_128 + 3*x_128^2 + 10*x_28 + 3*x_28^2 }-> s26 :|: s23 >= 0, s23 <= x_128 + 2, s24 >= 0, s24 <= x_28 + 2, s25 >= 0, s25 <= 2, s26 >= 0, s26 <= 2, x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 1 + 10*z + 3*z^2 }-> 1 + s8 :|: s8 >= 0, s8 <= z + 2, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 5 + 3*z }-> s :|: s >= 0, s <= 2, z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 7 + 3*z }-> s'' :|: s' >= 0, s' <= 2, s'' >= 0, s'' <= 2, z - 1 >= 0, z' = 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_not}, {encode_evenodd}, {encode_s} Previous analysis results are: not: runtime: O(1) [1], size: O(1) [2] encode_0: runtime: O(1) [0], size: O(1) [0] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] evenodd: runtime: O(n^1) [7 + 3*z], size: O(1) [2] encArg: runtime: O(n^2) [1 + 10*z + 3*z^2], size: O(n^1) [2 + z] encode_not: runtime: ?, size: O(1) [2] ---------------------------------------- (63) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_not after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 18 + 31*z + 12*z^2 ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ -6 + -2*z + 3*z^2 }-> s10 :|: s9 >= 0, s9 <= z - 2 + 2, s10 >= 0, s10 <= 2, z - 2 >= 0 encArg(z) -{ -5 + -2*z + 3*z^2 }-> s13 :|: s11 >= 0, s11 <= z - 2 + 2, s12 >= 0, s12 <= 2, s13 >= 0, s13 <= 2, z - 2 >= 0 encArg(z) -{ 10 + 3*s14 + 10*x_11 + 3*x_11^2 + 10*x_2' + 3*x_2'^2 }-> s17 :|: s14 >= 0, s14 <= x_11 + 2, s15 >= 0, s15 <= x_2' + 2, s16 >= 0, s16 <= 2, s17 >= 0, s17 <= 2, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 9 + 3*s2 + 10*x_1 + 3*x_1^2 + 10*x_2 + 3*x_2^2 }-> s4 :|: s2 >= 0, s2 <= x_1 + 2, s3 >= 0, s3 <= x_2 + 2, s4 >= 0, s4 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ -6 + 4*z + 3*z^2 }-> 1 + s1 :|: s1 >= 0, s1 <= z - 1 + 2, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 9 + 3*s5 + 10*z + 3*z^2 + 10*z' + 3*z'^2 }-> s7 :|: s5 >= 0, s5 <= z + 2, s6 >= 0, s6 <= z' + 2, s7 >= 0, s7 <= 2, z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ -5 + 4*z + 3*z^2 }-> s19 :|: s18 >= 0, s18 <= z - 1 + 2, s19 >= 0, s19 <= 2, z - 1 >= 0 encode_not(z) -{ -4 + 4*z + 3*z^2 }-> s22 :|: s20 >= 0, s20 <= z - 1 + 2, s21 >= 0, s21 <= 2, s22 >= 0, s22 <= 2, z - 1 >= 0 encode_not(z) -{ 10 + 3*s23 + 10*x_128 + 3*x_128^2 + 10*x_28 + 3*x_28^2 }-> s26 :|: s23 >= 0, s23 <= x_128 + 2, s24 >= 0, s24 <= x_28 + 2, s25 >= 0, s25 <= 2, s26 >= 0, s26 <= 2, x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 1 + 10*z + 3*z^2 }-> 1 + s8 :|: s8 >= 0, s8 <= z + 2, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 5 + 3*z }-> s :|: s >= 0, s <= 2, z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 7 + 3*z }-> s'' :|: s' >= 0, s' <= 2, s'' >= 0, s'' <= 2, z - 1 >= 0, z' = 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_evenodd}, {encode_s} Previous analysis results are: not: runtime: O(1) [1], size: O(1) [2] encode_0: runtime: O(1) [0], size: O(1) [0] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] evenodd: runtime: O(n^1) [7 + 3*z], size: O(1) [2] encArg: runtime: O(n^2) [1 + 10*z + 3*z^2], size: O(n^1) [2 + z] encode_not: runtime: O(n^2) [18 + 31*z + 12*z^2], size: O(1) [2] ---------------------------------------- (65) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ -6 + -2*z + 3*z^2 }-> s10 :|: s9 >= 0, s9 <= z - 2 + 2, s10 >= 0, s10 <= 2, z - 2 >= 0 encArg(z) -{ -5 + -2*z + 3*z^2 }-> s13 :|: s11 >= 0, s11 <= z - 2 + 2, s12 >= 0, s12 <= 2, s13 >= 0, s13 <= 2, z - 2 >= 0 encArg(z) -{ 10 + 3*s14 + 10*x_11 + 3*x_11^2 + 10*x_2' + 3*x_2'^2 }-> s17 :|: s14 >= 0, s14 <= x_11 + 2, s15 >= 0, s15 <= x_2' + 2, s16 >= 0, s16 <= 2, s17 >= 0, s17 <= 2, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 9 + 3*s2 + 10*x_1 + 3*x_1^2 + 10*x_2 + 3*x_2^2 }-> s4 :|: s2 >= 0, s2 <= x_1 + 2, s3 >= 0, s3 <= x_2 + 2, s4 >= 0, s4 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ -6 + 4*z + 3*z^2 }-> 1 + s1 :|: s1 >= 0, s1 <= z - 1 + 2, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 9 + 3*s5 + 10*z + 3*z^2 + 10*z' + 3*z'^2 }-> s7 :|: s5 >= 0, s5 <= z + 2, s6 >= 0, s6 <= z' + 2, s7 >= 0, s7 <= 2, z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ -5 + 4*z + 3*z^2 }-> s19 :|: s18 >= 0, s18 <= z - 1 + 2, s19 >= 0, s19 <= 2, z - 1 >= 0 encode_not(z) -{ -4 + 4*z + 3*z^2 }-> s22 :|: s20 >= 0, s20 <= z - 1 + 2, s21 >= 0, s21 <= 2, s22 >= 0, s22 <= 2, z - 1 >= 0 encode_not(z) -{ 10 + 3*s23 + 10*x_128 + 3*x_128^2 + 10*x_28 + 3*x_28^2 }-> s26 :|: s23 >= 0, s23 <= x_128 + 2, s24 >= 0, s24 <= x_28 + 2, s25 >= 0, s25 <= 2, s26 >= 0, s26 <= 2, x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 1 + 10*z + 3*z^2 }-> 1 + s8 :|: s8 >= 0, s8 <= z + 2, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 5 + 3*z }-> s :|: s >= 0, s <= 2, z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 7 + 3*z }-> s'' :|: s' >= 0, s' <= 2, s'' >= 0, s'' <= 2, z - 1 >= 0, z' = 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_evenodd}, {encode_s} Previous analysis results are: not: runtime: O(1) [1], size: O(1) [2] encode_0: runtime: O(1) [0], size: O(1) [0] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] evenodd: runtime: O(n^1) [7 + 3*z], size: O(1) [2] encArg: runtime: O(n^2) [1 + 10*z + 3*z^2], size: O(n^1) [2 + z] encode_not: runtime: O(n^2) [18 + 31*z + 12*z^2], size: O(1) [2] ---------------------------------------- (67) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_evenodd after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ -6 + -2*z + 3*z^2 }-> s10 :|: s9 >= 0, s9 <= z - 2 + 2, s10 >= 0, s10 <= 2, z - 2 >= 0 encArg(z) -{ -5 + -2*z + 3*z^2 }-> s13 :|: s11 >= 0, s11 <= z - 2 + 2, s12 >= 0, s12 <= 2, s13 >= 0, s13 <= 2, z - 2 >= 0 encArg(z) -{ 10 + 3*s14 + 10*x_11 + 3*x_11^2 + 10*x_2' + 3*x_2'^2 }-> s17 :|: s14 >= 0, s14 <= x_11 + 2, s15 >= 0, s15 <= x_2' + 2, s16 >= 0, s16 <= 2, s17 >= 0, s17 <= 2, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 9 + 3*s2 + 10*x_1 + 3*x_1^2 + 10*x_2 + 3*x_2^2 }-> s4 :|: s2 >= 0, s2 <= x_1 + 2, s3 >= 0, s3 <= x_2 + 2, s4 >= 0, s4 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ -6 + 4*z + 3*z^2 }-> 1 + s1 :|: s1 >= 0, s1 <= z - 1 + 2, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 9 + 3*s5 + 10*z + 3*z^2 + 10*z' + 3*z'^2 }-> s7 :|: s5 >= 0, s5 <= z + 2, s6 >= 0, s6 <= z' + 2, s7 >= 0, s7 <= 2, z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ -5 + 4*z + 3*z^2 }-> s19 :|: s18 >= 0, s18 <= z - 1 + 2, s19 >= 0, s19 <= 2, z - 1 >= 0 encode_not(z) -{ -4 + 4*z + 3*z^2 }-> s22 :|: s20 >= 0, s20 <= z - 1 + 2, s21 >= 0, s21 <= 2, s22 >= 0, s22 <= 2, z - 1 >= 0 encode_not(z) -{ 10 + 3*s23 + 10*x_128 + 3*x_128^2 + 10*x_28 + 3*x_28^2 }-> s26 :|: s23 >= 0, s23 <= x_128 + 2, s24 >= 0, s24 <= x_28 + 2, s25 >= 0, s25 <= 2, s26 >= 0, s26 <= 2, x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 1 + 10*z + 3*z^2 }-> 1 + s8 :|: s8 >= 0, s8 <= z + 2, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 5 + 3*z }-> s :|: s >= 0, s <= 2, z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 7 + 3*z }-> s'' :|: s' >= 0, s' <= 2, s'' >= 0, s'' <= 2, z - 1 >= 0, z' = 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_evenodd}, {encode_s} Previous analysis results are: not: runtime: O(1) [1], size: O(1) [2] encode_0: runtime: O(1) [0], size: O(1) [0] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] evenodd: runtime: O(n^1) [7 + 3*z], size: O(1) [2] encArg: runtime: O(n^2) [1 + 10*z + 3*z^2], size: O(n^1) [2 + z] encode_not: runtime: O(n^2) [18 + 31*z + 12*z^2], size: O(1) [2] encode_evenodd: runtime: ?, size: O(1) [2] ---------------------------------------- (69) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_evenodd after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 15 + 13*z + 3*z^2 + 10*z' + 3*z'^2 ---------------------------------------- (70) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ -6 + -2*z + 3*z^2 }-> s10 :|: s9 >= 0, s9 <= z - 2 + 2, s10 >= 0, s10 <= 2, z - 2 >= 0 encArg(z) -{ -5 + -2*z + 3*z^2 }-> s13 :|: s11 >= 0, s11 <= z - 2 + 2, s12 >= 0, s12 <= 2, s13 >= 0, s13 <= 2, z - 2 >= 0 encArg(z) -{ 10 + 3*s14 + 10*x_11 + 3*x_11^2 + 10*x_2' + 3*x_2'^2 }-> s17 :|: s14 >= 0, s14 <= x_11 + 2, s15 >= 0, s15 <= x_2' + 2, s16 >= 0, s16 <= 2, s17 >= 0, s17 <= 2, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 9 + 3*s2 + 10*x_1 + 3*x_1^2 + 10*x_2 + 3*x_2^2 }-> s4 :|: s2 >= 0, s2 <= x_1 + 2, s3 >= 0, s3 <= x_2 + 2, s4 >= 0, s4 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ -6 + 4*z + 3*z^2 }-> 1 + s1 :|: s1 >= 0, s1 <= z - 1 + 2, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 9 + 3*s5 + 10*z + 3*z^2 + 10*z' + 3*z'^2 }-> s7 :|: s5 >= 0, s5 <= z + 2, s6 >= 0, s6 <= z' + 2, s7 >= 0, s7 <= 2, z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ -5 + 4*z + 3*z^2 }-> s19 :|: s18 >= 0, s18 <= z - 1 + 2, s19 >= 0, s19 <= 2, z - 1 >= 0 encode_not(z) -{ -4 + 4*z + 3*z^2 }-> s22 :|: s20 >= 0, s20 <= z - 1 + 2, s21 >= 0, s21 <= 2, s22 >= 0, s22 <= 2, z - 1 >= 0 encode_not(z) -{ 10 + 3*s23 + 10*x_128 + 3*x_128^2 + 10*x_28 + 3*x_28^2 }-> s26 :|: s23 >= 0, s23 <= x_128 + 2, s24 >= 0, s24 <= x_28 + 2, s25 >= 0, s25 <= 2, s26 >= 0, s26 <= 2, x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 1 + 10*z + 3*z^2 }-> 1 + s8 :|: s8 >= 0, s8 <= z + 2, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 5 + 3*z }-> s :|: s >= 0, s <= 2, z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 7 + 3*z }-> s'' :|: s' >= 0, s' <= 2, s'' >= 0, s'' <= 2, z - 1 >= 0, z' = 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: not: runtime: O(1) [1], size: O(1) [2] encode_0: runtime: O(1) [0], size: O(1) [0] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] evenodd: runtime: O(n^1) [7 + 3*z], size: O(1) [2] encArg: runtime: O(n^2) [1 + 10*z + 3*z^2], size: O(n^1) [2 + z] encode_not: runtime: O(n^2) [18 + 31*z + 12*z^2], size: O(1) [2] encode_evenodd: runtime: O(n^2) [15 + 13*z + 3*z^2 + 10*z' + 3*z'^2], size: O(1) [2] ---------------------------------------- (71) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (72) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ -6 + -2*z + 3*z^2 }-> s10 :|: s9 >= 0, s9 <= z - 2 + 2, s10 >= 0, s10 <= 2, z - 2 >= 0 encArg(z) -{ -5 + -2*z + 3*z^2 }-> s13 :|: s11 >= 0, s11 <= z - 2 + 2, s12 >= 0, s12 <= 2, s13 >= 0, s13 <= 2, z - 2 >= 0 encArg(z) -{ 10 + 3*s14 + 10*x_11 + 3*x_11^2 + 10*x_2' + 3*x_2'^2 }-> s17 :|: s14 >= 0, s14 <= x_11 + 2, s15 >= 0, s15 <= x_2' + 2, s16 >= 0, s16 <= 2, s17 >= 0, s17 <= 2, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 9 + 3*s2 + 10*x_1 + 3*x_1^2 + 10*x_2 + 3*x_2^2 }-> s4 :|: s2 >= 0, s2 <= x_1 + 2, s3 >= 0, s3 <= x_2 + 2, s4 >= 0, s4 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ -6 + 4*z + 3*z^2 }-> 1 + s1 :|: s1 >= 0, s1 <= z - 1 + 2, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 9 + 3*s5 + 10*z + 3*z^2 + 10*z' + 3*z'^2 }-> s7 :|: s5 >= 0, s5 <= z + 2, s6 >= 0, s6 <= z' + 2, s7 >= 0, s7 <= 2, z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ -5 + 4*z + 3*z^2 }-> s19 :|: s18 >= 0, s18 <= z - 1 + 2, s19 >= 0, s19 <= 2, z - 1 >= 0 encode_not(z) -{ -4 + 4*z + 3*z^2 }-> s22 :|: s20 >= 0, s20 <= z - 1 + 2, s21 >= 0, s21 <= 2, s22 >= 0, s22 <= 2, z - 1 >= 0 encode_not(z) -{ 10 + 3*s23 + 10*x_128 + 3*x_128^2 + 10*x_28 + 3*x_28^2 }-> s26 :|: s23 >= 0, s23 <= x_128 + 2, s24 >= 0, s24 <= x_28 + 2, s25 >= 0, s25 <= 2, s26 >= 0, s26 <= 2, x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 1 + 10*z + 3*z^2 }-> 1 + s8 :|: s8 >= 0, s8 <= z + 2, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 5 + 3*z }-> s :|: s >= 0, s <= 2, z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 7 + 3*z }-> s'' :|: s' >= 0, s' <= 2, s'' >= 0, s'' <= 2, z - 1 >= 0, z' = 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: not: runtime: O(1) [1], size: O(1) [2] encode_0: runtime: O(1) [0], size: O(1) [0] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] evenodd: runtime: O(n^1) [7 + 3*z], size: O(1) [2] encArg: runtime: O(n^2) [1 + 10*z + 3*z^2], size: O(n^1) [2 + z] encode_not: runtime: O(n^2) [18 + 31*z + 12*z^2], size: O(1) [2] encode_evenodd: runtime: O(n^2) [15 + 13*z + 3*z^2 + 10*z' + 3*z'^2], size: O(1) [2] ---------------------------------------- (73) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + z ---------------------------------------- (74) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ -6 + -2*z + 3*z^2 }-> s10 :|: s9 >= 0, s9 <= z - 2 + 2, s10 >= 0, s10 <= 2, z - 2 >= 0 encArg(z) -{ -5 + -2*z + 3*z^2 }-> s13 :|: s11 >= 0, s11 <= z - 2 + 2, s12 >= 0, s12 <= 2, s13 >= 0, s13 <= 2, z - 2 >= 0 encArg(z) -{ 10 + 3*s14 + 10*x_11 + 3*x_11^2 + 10*x_2' + 3*x_2'^2 }-> s17 :|: s14 >= 0, s14 <= x_11 + 2, s15 >= 0, s15 <= x_2' + 2, s16 >= 0, s16 <= 2, s17 >= 0, s17 <= 2, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 9 + 3*s2 + 10*x_1 + 3*x_1^2 + 10*x_2 + 3*x_2^2 }-> s4 :|: s2 >= 0, s2 <= x_1 + 2, s3 >= 0, s3 <= x_2 + 2, s4 >= 0, s4 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ -6 + 4*z + 3*z^2 }-> 1 + s1 :|: s1 >= 0, s1 <= z - 1 + 2, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 9 + 3*s5 + 10*z + 3*z^2 + 10*z' + 3*z'^2 }-> s7 :|: s5 >= 0, s5 <= z + 2, s6 >= 0, s6 <= z' + 2, s7 >= 0, s7 <= 2, z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ -5 + 4*z + 3*z^2 }-> s19 :|: s18 >= 0, s18 <= z - 1 + 2, s19 >= 0, s19 <= 2, z - 1 >= 0 encode_not(z) -{ -4 + 4*z + 3*z^2 }-> s22 :|: s20 >= 0, s20 <= z - 1 + 2, s21 >= 0, s21 <= 2, s22 >= 0, s22 <= 2, z - 1 >= 0 encode_not(z) -{ 10 + 3*s23 + 10*x_128 + 3*x_128^2 + 10*x_28 + 3*x_28^2 }-> s26 :|: s23 >= 0, s23 <= x_128 + 2, s24 >= 0, s24 <= x_28 + 2, s25 >= 0, s25 <= 2, s26 >= 0, s26 <= 2, x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 1 + 10*z + 3*z^2 }-> 1 + s8 :|: s8 >= 0, s8 <= z + 2, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 5 + 3*z }-> s :|: s >= 0, s <= 2, z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 7 + 3*z }-> s'' :|: s' >= 0, s' <= 2, s'' >= 0, s'' <= 2, z - 1 >= 0, z' = 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: not: runtime: O(1) [1], size: O(1) [2] encode_0: runtime: O(1) [0], size: O(1) [0] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] evenodd: runtime: O(n^1) [7 + 3*z], size: O(1) [2] encArg: runtime: O(n^2) [1 + 10*z + 3*z^2], size: O(n^1) [2 + z] encode_not: runtime: O(n^2) [18 + 31*z + 12*z^2], size: O(1) [2] encode_evenodd: runtime: O(n^2) [15 + 13*z + 3*z^2 + 10*z' + 3*z'^2], size: O(1) [2] encode_s: runtime: ?, size: O(n^1) [3 + z] ---------------------------------------- (75) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + 10*z + 3*z^2 ---------------------------------------- (76) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ -6 + -2*z + 3*z^2 }-> s10 :|: s9 >= 0, s9 <= z - 2 + 2, s10 >= 0, s10 <= 2, z - 2 >= 0 encArg(z) -{ -5 + -2*z + 3*z^2 }-> s13 :|: s11 >= 0, s11 <= z - 2 + 2, s12 >= 0, s12 <= 2, s13 >= 0, s13 <= 2, z - 2 >= 0 encArg(z) -{ 10 + 3*s14 + 10*x_11 + 3*x_11^2 + 10*x_2' + 3*x_2'^2 }-> s17 :|: s14 >= 0, s14 <= x_11 + 2, s15 >= 0, s15 <= x_2' + 2, s16 >= 0, s16 <= 2, s17 >= 0, s17 <= 2, x_11 >= 0, x_2' >= 0, z = 1 + (1 + x_11 + x_2') encArg(z) -{ 9 + 3*s2 + 10*x_1 + 3*x_1^2 + 10*x_2 + 3*x_2^2 }-> s4 :|: s2 >= 0, s2 <= x_1 + 2, s3 >= 0, s3 <= x_2 + 2, s4 >= 0, s4 <= 2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 + 1, 1 = 1 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 1 }-> 1 :|: z = 1 + 2, 2 = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 2, v0 >= 0, 2 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 1, v0 >= 0, 1 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ -6 + 4*z + 3*z^2 }-> 1 + s1 :|: s1 >= 0, s1 <= z - 1 + 2, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_evenodd(z, z') -{ 9 + 3*s5 + 10*z + 3*z^2 + 10*z' + 3*z'^2 }-> s7 :|: s5 >= 0, s5 <= z + 2, s6 >= 0, s6 <= z' + 2, s7 >= 0, s7 <= 2, z >= 0, z' >= 0 encode_evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_false -{ 0 }-> 1 :|: encode_false -{ 0 }-> 0 :|: encode_not(z) -{ -5 + 4*z + 3*z^2 }-> s19 :|: s18 >= 0, s18 <= z - 1 + 2, s19 >= 0, s19 <= 2, z - 1 >= 0 encode_not(z) -{ -4 + 4*z + 3*z^2 }-> s22 :|: s20 >= 0, s20 <= z - 1 + 2, s21 >= 0, s21 <= 2, s22 >= 0, s22 <= 2, z - 1 >= 0 encode_not(z) -{ 10 + 3*s23 + 10*x_128 + 3*x_128^2 + 10*x_28 + 3*x_28^2 }-> s26 :|: s23 >= 0, s23 <= x_128 + 2, s24 >= 0, s24 <= x_28 + 2, s25 >= 0, s25 <= 2, s26 >= 0, s26 <= 2, x_128 >= 0, z = 1 + x_128 + x_28, x_28 >= 0 encode_not(z) -{ 1 }-> 2 :|: z = 1, 1 = 1 encode_not(z) -{ 1 }-> 1 :|: z = 2, 2 = 2 encode_not(z) -{ 0 }-> 0 :|: z >= 0 encode_not(z) -{ 0 }-> 0 :|: z = 2, v0 >= 0, 2 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 1, v0 >= 0, 1 = v0 encode_not(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_not(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 1 + 10*z + 3*z^2 }-> 1 + s8 :|: s8 >= 0, s8 <= z + 2, z >= 0 encode_true -{ 0 }-> 2 :|: encode_true -{ 0 }-> 0 :|: evenodd(z, z') -{ 5 + 3*z }-> s :|: s >= 0, s <= 2, z - 1 >= 0, z' = 1 + 0 evenodd(z, z') -{ 7 + 3*z }-> s'' :|: s' >= 0, s' <= 2, s'' >= 0, s'' <= 2, z - 1 >= 0, z' = 0 evenodd(z, z') -{ 3 }-> 2 :|: z = 0, z' = 0, 1 = 1 evenodd(z, z') -{ 1 }-> 1 :|: z' = 1 + 0, z = 0 evenodd(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 evenodd(z, z') -{ 2 }-> 0 :|: z = 0, z' = 0, v0 >= 0, 1 = v0 evenodd(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0, v0 >= 0, 0 = v0 not(z) -{ 1 }-> 2 :|: z = 1 not(z) -{ 1 }-> 1 :|: z = 2 not(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: Previous analysis results are: not: runtime: O(1) [1], size: O(1) [2] encode_0: runtime: O(1) [0], size: O(1) [0] encode_false: runtime: O(1) [0], size: O(1) [1] encode_true: runtime: O(1) [0], size: O(1) [2] evenodd: runtime: O(n^1) [7 + 3*z], size: O(1) [2] encArg: runtime: O(n^2) [1 + 10*z + 3*z^2], size: O(n^1) [2 + z] encode_not: runtime: O(n^2) [18 + 31*z + 12*z^2], size: O(1) [2] encode_evenodd: runtime: O(n^2) [15 + 13*z + 3*z^2 + 10*z' + 3*z'^2], size: O(1) [2] encode_s: runtime: O(n^2) [1 + 10*z + 3*z^2], size: O(n^1) [3 + z] ---------------------------------------- (77) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (78) BOUNDS(1, n^2) ---------------------------------------- (79) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (80) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: not(true) -> false not(false) -> true evenodd(x, 0) -> not(evenodd(x, s(0))) evenodd(0, s(0)) -> false evenodd(s(x), s(0)) -> evenodd(x, 0) The (relative) TRS S consists of the following rules: encArg(true) -> true encArg(false) -> false encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_evenodd(x_1, x_2)) -> evenodd(encArg(x_1), encArg(x_2)) encode_not(x_1) -> not(encArg(x_1)) encode_true -> true encode_false -> false encode_evenodd(x_1, x_2) -> evenodd(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (81) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence evenodd(s(x1_0), 0) ->^+ not(evenodd(x1_0, 0)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [x1_0 / s(x1_0)]. The result substitution is [ ]. ---------------------------------------- (82) Complex Obligation (BEST) ---------------------------------------- (83) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: not(true) -> false not(false) -> true evenodd(x, 0) -> not(evenodd(x, s(0))) evenodd(0, s(0)) -> false evenodd(s(x), s(0)) -> evenodd(x, 0) The (relative) TRS S consists of the following rules: encArg(true) -> true encArg(false) -> false encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_evenodd(x_1, x_2)) -> evenodd(encArg(x_1), encArg(x_2)) encode_not(x_1) -> not(encArg(x_1)) encode_true -> true encode_false -> false encode_evenodd(x_1, x_2) -> evenodd(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (84) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (85) BOUNDS(n^1, INF) ---------------------------------------- (86) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: not(true) -> false not(false) -> true evenodd(x, 0) -> not(evenodd(x, s(0))) evenodd(0, s(0)) -> false evenodd(s(x), s(0)) -> evenodd(x, 0) The (relative) TRS S consists of the following rules: encArg(true) -> true encArg(false) -> false encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_evenodd(x_1, x_2)) -> evenodd(encArg(x_1), encArg(x_2)) encode_not(x_1) -> not(encArg(x_1)) encode_true -> true encode_false -> false encode_evenodd(x_1, x_2) -> evenodd(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: FULL