/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 52 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 556 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 71 ms] (18) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(x) -> s(x) f(s(s(x))) -> s(f(f(x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(x) -> s(x) f(s(s(x))) -> s(f(f(x))) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(x) -> s(x) f(s(s(x))) -> s(f(f(x))) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(x) -> s(x) f(s(s(x))) -> s(f(f(x))) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: TRS: Rules: f(x) -> s(x) f(s(s(x))) -> s(f(f(x))) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) Types: f :: s:cons_f -> s:cons_f s :: s:cons_f -> s:cons_f encArg :: s:cons_f -> s:cons_f cons_f :: s:cons_f -> s:cons_f encode_f :: s:cons_f -> s:cons_f encode_s :: s:cons_f -> s:cons_f hole_s:cons_f1_0 :: s:cons_f gen_s:cons_f2_0 :: Nat -> s:cons_f ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (10) Obligation: TRS: Rules: f(x) -> s(x) f(s(s(x))) -> s(f(f(x))) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) Types: f :: s:cons_f -> s:cons_f s :: s:cons_f -> s:cons_f encArg :: s:cons_f -> s:cons_f cons_f :: s:cons_f -> s:cons_f encode_f :: s:cons_f -> s:cons_f encode_s :: s:cons_f -> s:cons_f hole_s:cons_f1_0 :: s:cons_f gen_s:cons_f2_0 :: Nat -> s:cons_f Generator Equations: gen_s:cons_f2_0(0) <=> hole_s:cons_f1_0 gen_s:cons_f2_0(+(x, 1)) <=> s(gen_s:cons_f2_0(x)) The following defined symbols remain to be analysed: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_s:cons_f2_0(+(2, *(2, n4_0)))) -> *3_0, rt in Omega(n4_0) Induction Base: f(gen_s:cons_f2_0(+(2, *(2, 0)))) Induction Step: f(gen_s:cons_f2_0(+(2, *(2, +(n4_0, 1))))) ->_R^Omega(1) s(f(f(gen_s:cons_f2_0(+(2, *(2, n4_0)))))) ->_IH s(f(*3_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: f(x) -> s(x) f(s(s(x))) -> s(f(f(x))) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) Types: f :: s:cons_f -> s:cons_f s :: s:cons_f -> s:cons_f encArg :: s:cons_f -> s:cons_f cons_f :: s:cons_f -> s:cons_f encode_f :: s:cons_f -> s:cons_f encode_s :: s:cons_f -> s:cons_f hole_s:cons_f1_0 :: s:cons_f gen_s:cons_f2_0 :: Nat -> s:cons_f Generator Equations: gen_s:cons_f2_0(0) <=> hole_s:cons_f1_0 gen_s:cons_f2_0(+(x, 1)) <=> s(gen_s:cons_f2_0(x)) The following defined symbols remain to be analysed: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: TRS: Rules: f(x) -> s(x) f(s(s(x))) -> s(f(f(x))) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) Types: f :: s:cons_f -> s:cons_f s :: s:cons_f -> s:cons_f encArg :: s:cons_f -> s:cons_f cons_f :: s:cons_f -> s:cons_f encode_f :: s:cons_f -> s:cons_f encode_s :: s:cons_f -> s:cons_f hole_s:cons_f1_0 :: s:cons_f gen_s:cons_f2_0 :: Nat -> s:cons_f Lemmas: f(gen_s:cons_f2_0(+(2, *(2, n4_0)))) -> *3_0, rt in Omega(n4_0) Generator Equations: gen_s:cons_f2_0(0) <=> hole_s:cons_f1_0 gen_s:cons_f2_0(+(x, 1)) <=> s(gen_s:cons_f2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_s:cons_f2_0(+(1, n391_0))) -> *3_0, rt in Omega(0) Induction Base: encArg(gen_s:cons_f2_0(+(1, 0))) Induction Step: encArg(gen_s:cons_f2_0(+(1, +(n391_0, 1)))) ->_R^Omega(0) s(encArg(gen_s:cons_f2_0(+(1, n391_0)))) ->_IH s(*3_0) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (18) BOUNDS(1, INF)