/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 45 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsProof [FINISHED, 0 ms] (8) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(f(X)) -> f(a(b(f(X)))) f(a(g(X))) -> b(X) b(X) -> a(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(a(x_1)) -> a(encArg(x_1)) encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(f(X)) -> f(a(b(f(X)))) f(a(g(X))) -> b(X) b(X) -> a(X) The (relative) TRS S consists of the following rules: encArg(a(x_1)) -> a(encArg(x_1)) encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(f(X)) -> f(a(b(f(X)))) f(a(g(X))) -> b(X) b(X) -> a(X) The (relative) TRS S consists of the following rules: encArg(a(x_1)) -> a(encArg(x_1)) encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(f(X)) -> f(a(b(f(X)))) f(a(g(X))) -> b(X) b(X) -> a(X) encArg(a(x_1)) -> a(encArg(x_1)) encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) CpxTrsMatchBoundsProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 4. The certificate found is represented by the following graph. "[44, 45, 46, 47, 48, 49, 50, 51, 52] {(44,45,[f_1|0, b_1|0, encArg_1|0, encode_f_1|0, encode_a_1|0, encode_b_1|0, encode_g_1|0, b_1|1, a_1|1, a_1|2]), (44,46,[a_1|1, g_1|1, f_1|1, b_1|1, a_1|2, b_1|2, a_1|3]), (44,47,[f_1|2]), (45,45,[a_1|0, g_1|0, cons_f_1|0, cons_b_1|0]), (46,45,[encArg_1|1]), (46,46,[a_1|1, g_1|1, f_1|1, b_1|1, b_1|2, a_1|2, a_1|3]), (46,47,[f_1|2]), (47,48,[a_1|2]), (48,49,[b_1|2, a_1|3]), (49,46,[f_1|2, b_1|2, a_1|3]), (49,47,[f_1|2]), (49,50,[f_1|3]), (50,51,[a_1|3]), (51,52,[b_1|3, a_1|4]), (52,47,[f_1|3])}" ---------------------------------------- (8) BOUNDS(1, n^1)