/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 161 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsTAProof [FINISHED, 76 ms] (8) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a -> g(c) g(a) -> b f(g(X), b) -> f(a, X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(c) -> c encArg(b) -> b encArg(cons_a) -> a encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_c -> c encode_b -> b encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a -> g(c) g(a) -> b f(g(X), b) -> f(a, X) The (relative) TRS S consists of the following rules: encArg(c) -> c encArg(b) -> b encArg(cons_a) -> a encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_c -> c encode_b -> b encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a -> g(c) g(a) -> b f(g(X), b) -> f(a, X) The (relative) TRS S consists of the following rules: encArg(c) -> c encArg(b) -> b encArg(cons_a) -> a encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_c -> c encode_b -> b encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a -> g(c) g(a) -> b f(g(X), b) -> f(a, X) encArg(c) -> c encArg(b) -> b encArg(cons_a) -> a encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_c -> c encode_b -> b encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 4. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7, 8, 9] transitions: c0() -> 0 b0() -> 0 cons_a0() -> 0 cons_g0(0) -> 0 cons_f0(0, 0) -> 0 a0() -> 1 g0(0) -> 2 f0(0, 0) -> 3 encArg0(0) -> 4 encode_a0() -> 5 encode_g0(0) -> 6 encode_c0() -> 7 encode_b0() -> 8 encode_f0(0, 0) -> 9 c1() -> 10 g1(10) -> 1 c1() -> 4 b1() -> 4 a1() -> 4 encArg1(0) -> 11 g1(11) -> 4 encArg1(0) -> 12 encArg1(0) -> 13 f1(12, 13) -> 4 a1() -> 5 g1(11) -> 6 c1() -> 7 b1() -> 8 f1(12, 13) -> 9 c2() -> 14 g2(14) -> 4 g2(14) -> 5 c1() -> 11 c1() -> 12 c1() -> 13 b1() -> 11 b1() -> 12 b1() -> 13 a1() -> 11 a1() -> 12 a1() -> 13 g1(11) -> 11 g1(11) -> 12 g1(11) -> 13 f1(12, 13) -> 11 f1(12, 13) -> 12 f1(12, 13) -> 13 g2(14) -> 11 g2(14) -> 12 g2(14) -> 13 b2() -> 4 b2() -> 6 b2() -> 11 b2() -> 12 b2() -> 13 a2() -> 15 f2(15, 11) -> 4 f2(15, 11) -> 9 f2(15, 11) -> 11 f2(15, 11) -> 12 f2(15, 11) -> 13 f2(15, 14) -> 4 f2(15, 14) -> 9 f2(15, 14) -> 11 f2(15, 14) -> 12 f2(15, 14) -> 13 c3() -> 16 g3(16) -> 15 f2(15, 16) -> 4 f2(15, 16) -> 9 f2(15, 16) -> 11 f2(15, 16) -> 12 f2(15, 16) -> 13 a3() -> 17 f3(17, 16) -> 4 f3(17, 16) -> 9 f3(17, 16) -> 11 f3(17, 16) -> 12 f3(17, 16) -> 13 c4() -> 18 g4(18) -> 17 ---------------------------------------- (8) BOUNDS(1, n^1)