/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 160 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsTAProof [FINISHED, 35 ms] (8) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(s(X), Y) -> h(s(f(h(Y), X))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(s(x_1)) -> s(encArg(x_1)) encArg(h(x_1)) -> h(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(s(X), Y) -> h(s(f(h(Y), X))) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(h(x_1)) -> h(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(s(X), Y) -> h(s(f(h(Y), X))) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(h(x_1)) -> h(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(s(X), Y) -> h(s(f(h(Y), X))) encArg(s(x_1)) -> s(encArg(x_1)) encArg(h(x_1)) -> h(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5] transitions: s0(0) -> 0 h0(0) -> 0 cons_f0(0, 0) -> 0 f0(0, 0) -> 1 encArg0(0) -> 2 encode_f0(0, 0) -> 3 encode_s0(0) -> 4 encode_h0(0) -> 5 h1(0) -> 8 f1(8, 0) -> 7 s1(7) -> 6 h1(6) -> 1 encArg1(0) -> 9 s1(9) -> 2 encArg1(0) -> 10 h1(10) -> 2 encArg1(0) -> 11 encArg1(0) -> 12 f1(11, 12) -> 2 f1(11, 12) -> 3 s1(9) -> 4 h1(10) -> 5 s1(9) -> 9 s1(9) -> 10 s1(9) -> 11 s1(9) -> 12 h1(10) -> 9 h1(10) -> 10 h1(10) -> 11 h1(10) -> 12 f1(11, 12) -> 9 f1(11, 12) -> 10 f1(11, 12) -> 11 f1(11, 12) -> 12 h2(12) -> 15 f2(15, 9) -> 14 s2(14) -> 13 h2(13) -> 2 h2(13) -> 3 h2(13) -> 9 h2(13) -> 10 h2(13) -> 11 h2(13) -> 12 ---------------------------------------- (8) BOUNDS(1, n^1)