/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 165 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsTAProof [FINISHED, 505 ms] (8) BOUNDS(1, n^1) (9) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (10) TRS for Loop Detection (11) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(a, a) -> f(a, b) f(a, b) -> f(s(a), c) f(s(X), c) -> f(X, c) f(c, c) -> f(a, a) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(a) -> a encArg(b) -> b encArg(s(x_1)) -> s(encArg(x_1)) encArg(c) -> c encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_b -> b encode_s(x_1) -> s(encArg(x_1)) encode_c -> c ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(a, a) -> f(a, b) f(a, b) -> f(s(a), c) f(s(X), c) -> f(X, c) f(c, c) -> f(a, a) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(s(x_1)) -> s(encArg(x_1)) encArg(c) -> c encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_b -> b encode_s(x_1) -> s(encArg(x_1)) encode_c -> c Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(a, a) -> f(a, b) f(a, b) -> f(s(a), c) f(s(X), c) -> f(X, c) f(c, c) -> f(a, a) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(s(x_1)) -> s(encArg(x_1)) encArg(c) -> c encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_b -> b encode_s(x_1) -> s(encArg(x_1)) encode_c -> c Rewrite Strategy: FULL ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a, a) -> f(a, b) f(a, b) -> f(s(a), c) f(s(X), c) -> f(X, c) f(c, c) -> f(a, a) encArg(a) -> a encArg(b) -> b encArg(s(x_1)) -> s(encArg(x_1)) encArg(c) -> c encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_b -> b encode_s(x_1) -> s(encArg(x_1)) encode_c -> c S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 5. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7] transitions: a0() -> 0 b0() -> 0 s0(0) -> 0 c0() -> 0 cons_f0(0, 0) -> 0 f0(0, 0) -> 1 encArg0(0) -> 2 encode_f0(0, 0) -> 3 encode_a0() -> 4 encode_b0() -> 5 encode_s0(0) -> 6 encode_c0() -> 7 a1() -> 8 b1() -> 9 f1(8, 9) -> 1 a1() -> 11 s1(11) -> 10 c1() -> 12 f1(10, 12) -> 1 f1(0, 12) -> 1 a1() -> 13 f1(8, 13) -> 1 a1() -> 2 b1() -> 2 encArg1(0) -> 14 s1(14) -> 2 c1() -> 2 encArg1(0) -> 15 encArg1(0) -> 16 f1(15, 16) -> 2 f1(15, 16) -> 3 a1() -> 4 b1() -> 5 s1(14) -> 6 c1() -> 7 a2() -> 17 b2() -> 18 f2(17, 18) -> 1 a2() -> 20 s2(20) -> 19 c2() -> 21 f2(19, 21) -> 1 f2(11, 21) -> 1 a1() -> 14 a1() -> 15 a1() -> 16 b1() -> 14 b1() -> 15 b1() -> 16 s1(14) -> 14 s1(14) -> 15 s1(14) -> 16 c1() -> 14 c1() -> 15 c1() -> 16 f1(15, 16) -> 14 f1(15, 16) -> 15 f1(15, 16) -> 16 f2(17, 18) -> 2 f2(17, 18) -> 3 f2(17, 18) -> 14 f2(17, 18) -> 15 f2(17, 18) -> 16 f2(19, 21) -> 2 f2(19, 21) -> 3 f2(19, 21) -> 14 f2(19, 21) -> 15 f2(19, 21) -> 16 f2(14, 21) -> 2 f2(14, 21) -> 3 f2(14, 21) -> 14 f2(14, 21) -> 15 f2(14, 21) -> 16 a2() -> 22 f2(17, 22) -> 2 f2(17, 22) -> 3 f2(17, 22) -> 14 f2(17, 22) -> 15 f2(17, 22) -> 16 a3() -> 24 s3(24) -> 23 c3() -> 25 f3(23, 25) -> 1 f3(20, 25) -> 1 a3() -> 26 b3() -> 27 f3(26, 27) -> 2 f3(26, 27) -> 3 f3(26, 27) -> 14 f3(26, 27) -> 15 f3(26, 27) -> 16 f3(23, 25) -> 2 f3(23, 25) -> 3 f3(23, 25) -> 14 f3(23, 25) -> 15 f3(23, 25) -> 16 f3(20, 25) -> 2 f3(20, 25) -> 3 f3(20, 25) -> 14 f3(20, 25) -> 15 f3(20, 25) -> 16 c4() -> 28 f4(24, 28) -> 1 f4(24, 28) -> 2 f4(24, 28) -> 3 f4(24, 28) -> 14 f4(24, 28) -> 15 f4(24, 28) -> 16 a4() -> 30 s4(30) -> 29 f4(29, 28) -> 2 f4(29, 28) -> 3 f4(29, 28) -> 14 f4(29, 28) -> 15 f4(29, 28) -> 16 c5() -> 31 f5(30, 31) -> 2 f5(30, 31) -> 3 f5(30, 31) -> 14 f5(30, 31) -> 15 f5(30, 31) -> 16 ---------------------------------------- (8) BOUNDS(1, n^1) ---------------------------------------- (9) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (10) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(a, a) -> f(a, b) f(a, b) -> f(s(a), c) f(s(X), c) -> f(X, c) f(c, c) -> f(a, a) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(s(x_1)) -> s(encArg(x_1)) encArg(c) -> c encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_b -> b encode_s(x_1) -> s(encArg(x_1)) encode_c -> c Rewrite Strategy: FULL ---------------------------------------- (11) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence f(s(X), c) ->^+ f(X, c) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [X / s(X)]. The result substitution is [ ]. ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(a, a) -> f(a, b) f(a, b) -> f(s(a), c) f(s(X), c) -> f(X, c) f(c, c) -> f(a, a) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(s(x_1)) -> s(encArg(x_1)) encArg(c) -> c encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_b -> b encode_s(x_1) -> s(encArg(x_1)) encode_c -> c Rewrite Strategy: FULL ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(a, a) -> f(a, b) f(a, b) -> f(s(a), c) f(s(X), c) -> f(X, c) f(c, c) -> f(a, a) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(s(x_1)) -> s(encArg(x_1)) encArg(c) -> c encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_b -> b encode_s(x_1) -> s(encArg(x_1)) encode_c -> c Rewrite Strategy: FULL