/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- KILLED proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 160 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 322 ms] (12) BOUNDS(1, INF) (13) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (14) TRS for Loop Detection (15) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (16) CpxTRS (17) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] (18) CpxRelTRS (19) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CpxRelTRS (21) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CpxWeightedTrs (23) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CpxTypedWeightedTrs (25) CompletionProof [UPPER BOUND(ID), 0 ms] (26) CpxTypedWeightedCompleteTrs (27) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (28) CpxTypedWeightedCompleteTrs (29) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) InliningProof [UPPER BOUND(ID), 353 ms] (32) CpxRNTS (33) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (34) CpxRNTS (35) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (36) CpxRNTS (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 104 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 19 ms] (42) CpxRNTS (43) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 150 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 32 ms] (48) CpxRNTS (49) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 3548 ms] (52) CpxRNTS (53) IntTrsBoundProof [UPPER BOUND(ID), 1182 ms] (54) CpxRNTS (55) CompletionProof [UPPER BOUND(ID), 0 ms] (56) CpxTypedWeightedCompleteTrs (57) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (58) CpxRNTS (59) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (60) CdtProblem (61) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (62) CdtProblem (63) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (64) CdtProblem (65) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (66) CdtProblem (67) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (68) CdtProblem (69) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 80 ms] (70) CdtProblem (71) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (72) CdtProblem (73) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (74) CdtProblem (75) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (76) CdtProblem (77) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (78) CdtProblem (79) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 24 ms] (80) CdtProblem (81) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (82) CdtProblem (83) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (84) CdtProblem (85) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (86) CdtProblem (87) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 31 ms] (88) CdtProblem (89) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (90) CdtProblem (91) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (92) CdtProblem (93) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (94) CdtProblem (95) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 19 ms] (96) CdtProblem (97) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (98) CdtProblem (99) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (100) CdtProblem (101) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (102) CdtProblem (103) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 14 ms] (104) CdtProblem (105) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (106) CdtProblem (107) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (108) CdtProblem (109) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (110) CdtProblem ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(x, x) -> f(i(x), g(g(x))) f(x, y) -> x g(x) -> i(x) f(x, i(x)) -> f(x, x) f(i(x), i(g(x))) -> a S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(i(x_1)) -> i(encArg(x_1)) encArg(a) -> a encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_i(x_1) -> i(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(x, x) -> f(i(x), g(g(x))) f(x, y) -> x g(x) -> i(x) f(x, i(x)) -> f(x, x) f(i(x), i(g(x))) -> a The (relative) TRS S consists of the following rules: encArg(i(x_1)) -> i(encArg(x_1)) encArg(a) -> a encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_i(x_1) -> i(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(x, x) -> f(i(x), g(g(x))) f(x, y) -> x g(x) -> i(x) f(x, i(x)) -> f(x, x) f(i(x), i(g(x))) -> a The (relative) TRS S consists of the following rules: encArg(i(x_1)) -> i(encArg(x_1)) encArg(a) -> a encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_i(x_1) -> i(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a Rewrite Strategy: FULL ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(x, x) -> f(i(x), g(g(x))) f(x, y) -> x g(x) -> i(x) f(x, i(x)) -> f(x, x) f(i(x), i(g(x))) -> a The (relative) TRS S consists of the following rules: encArg(i(x_1)) -> i(encArg(x_1)) encArg(a) -> a encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_i(x_1) -> i(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a Rewrite Strategy: FULL ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: TRS: Rules: f(x, x) -> f(i(x), g(g(x))) f(x, y) -> x g(x) -> i(x) f(x, i(x)) -> f(x, x) f(i(x), i(g(x))) -> a encArg(i(x_1)) -> i(encArg(x_1)) encArg(a) -> a encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_i(x_1) -> i(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a Types: f :: i:a:cons_f:cons_g -> i:a:cons_f:cons_g -> i:a:cons_f:cons_g i :: i:a:cons_f:cons_g -> i:a:cons_f:cons_g g :: i:a:cons_f:cons_g -> i:a:cons_f:cons_g a :: i:a:cons_f:cons_g encArg :: i:a:cons_f:cons_g -> i:a:cons_f:cons_g cons_f :: i:a:cons_f:cons_g -> i:a:cons_f:cons_g -> i:a:cons_f:cons_g cons_g :: i:a:cons_f:cons_g -> i:a:cons_f:cons_g encode_f :: i:a:cons_f:cons_g -> i:a:cons_f:cons_g -> i:a:cons_f:cons_g encode_i :: i:a:cons_f:cons_g -> i:a:cons_f:cons_g encode_g :: i:a:cons_f:cons_g -> i:a:cons_f:cons_g encode_a :: i:a:cons_f:cons_g hole_i:a:cons_f:cons_g1_0 :: i:a:cons_f:cons_g gen_i:a:cons_f:cons_g2_0 :: Nat -> i:a:cons_f:cons_g ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (10) Obligation: TRS: Rules: f(x, x) -> f(i(x), g(g(x))) f(x, y) -> x g(x) -> i(x) f(x, i(x)) -> f(x, x) f(i(x), i(g(x))) -> a encArg(i(x_1)) -> i(encArg(x_1)) encArg(a) -> a encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_i(x_1) -> i(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a Types: f :: i:a:cons_f:cons_g -> i:a:cons_f:cons_g -> i:a:cons_f:cons_g i :: i:a:cons_f:cons_g -> i:a:cons_f:cons_g g :: i:a:cons_f:cons_g -> i:a:cons_f:cons_g a :: i:a:cons_f:cons_g encArg :: i:a:cons_f:cons_g -> i:a:cons_f:cons_g cons_f :: i:a:cons_f:cons_g -> i:a:cons_f:cons_g -> i:a:cons_f:cons_g cons_g :: i:a:cons_f:cons_g -> i:a:cons_f:cons_g encode_f :: i:a:cons_f:cons_g -> i:a:cons_f:cons_g -> i:a:cons_f:cons_g encode_i :: i:a:cons_f:cons_g -> i:a:cons_f:cons_g encode_g :: i:a:cons_f:cons_g -> i:a:cons_f:cons_g encode_a :: i:a:cons_f:cons_g hole_i:a:cons_f:cons_g1_0 :: i:a:cons_f:cons_g gen_i:a:cons_f:cons_g2_0 :: Nat -> i:a:cons_f:cons_g Generator Equations: gen_i:a:cons_f:cons_g2_0(0) <=> a gen_i:a:cons_f:cons_g2_0(+(x, 1)) <=> i(gen_i:a:cons_f:cons_g2_0(x)) The following defined symbols remain to be analysed: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_i:a:cons_f:cons_g2_0(n815_0)) -> gen_i:a:cons_f:cons_g2_0(n815_0), rt in Omega(0) Induction Base: encArg(gen_i:a:cons_f:cons_g2_0(0)) ->_R^Omega(0) a Induction Step: encArg(gen_i:a:cons_f:cons_g2_0(+(n815_0, 1))) ->_R^Omega(0) i(encArg(gen_i:a:cons_f:cons_g2_0(n815_0))) ->_IH i(gen_i:a:cons_f:cons_g2_0(c816_0)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (12) BOUNDS(1, INF) ---------------------------------------- (13) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (14) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(x, x) -> f(i(x), g(g(x))) f(x, y) -> x g(x) -> i(x) f(x, i(x)) -> f(x, x) f(i(x), i(g(x))) -> a The (relative) TRS S consists of the following rules: encArg(i(x_1)) -> i(encArg(x_1)) encArg(a) -> a encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_i(x_1) -> i(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a Rewrite Strategy: FULL ---------------------------------------- (15) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (16) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(x, x) -> f(i(x), g(g(x))) f(x, y) -> x g(x) -> i(x) f(x, i(x)) -> f(x, x) f(i(x), i(g(x))) -> a encArg(i(x_1)) -> i(encArg(x_1)) encArg(a) -> a encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_i(x_1) -> i(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a S is empty. Rewrite Strategy: FULL ---------------------------------------- (17) NonCtorToCtorProof (UPPER BOUND(ID)) transformed non-ctor to ctor-system ---------------------------------------- (18) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(x, x) -> f(i(x), g(g(x))) f(x, y) -> x g(x) -> i(x) f(x, i(x)) -> f(x, x) f(i(x), i(c_g(x))) -> a The (relative) TRS S consists of the following rules: encArg(i(x_1)) -> i(encArg(x_1)) encArg(a) -> a encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_i(x_1) -> i(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a g(x0) -> c_g(x0) Rewrite Strategy: FULL ---------------------------------------- (19) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS is a non-duplicating overlay system, we have rc = irc. ---------------------------------------- (20) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(x, x) -> f(i(x), g(g(x))) f(x, y) -> x g(x) -> i(x) f(x, i(x)) -> f(x, x) f(i(x), i(c_g(x))) -> a The (relative) TRS S consists of the following rules: encArg(i(x_1)) -> i(encArg(x_1)) encArg(a) -> a encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_i(x_1) -> i(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a g(x0) -> c_g(x0) Rewrite Strategy: INNERMOST ---------------------------------------- (21) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (22) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(x, x) -> f(i(x), g(g(x))) [1] f(x, y) -> x [1] g(x) -> i(x) [1] f(x, i(x)) -> f(x, x) [1] f(i(x), i(c_g(x))) -> a [1] encArg(i(x_1)) -> i(encArg(x_1)) [0] encArg(a) -> a [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_g(x_1)) -> g(encArg(x_1)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_i(x_1) -> i(encArg(x_1)) [0] encode_g(x_1) -> g(encArg(x_1)) [0] encode_a -> a [0] g(x0) -> c_g(x0) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (23) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (24) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, x) -> f(i(x), g(g(x))) [1] f(x, y) -> x [1] g(x) -> i(x) [1] f(x, i(x)) -> f(x, x) [1] f(i(x), i(c_g(x))) -> a [1] encArg(i(x_1)) -> i(encArg(x_1)) [0] encArg(a) -> a [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_g(x_1)) -> g(encArg(x_1)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_i(x_1) -> i(encArg(x_1)) [0] encode_g(x_1) -> g(encArg(x_1)) [0] encode_a -> a [0] g(x0) -> c_g(x0) [0] The TRS has the following type information: f :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g i :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g g :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g c_g :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g a :: i:c_g:a:cons_f:cons_g encArg :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g cons_f :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g cons_g :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g encode_f :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g encode_i :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g encode_g :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g encode_a :: i:c_g:a:cons_f:cons_g Rewrite Strategy: INNERMOST ---------------------------------------- (25) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: f_2 encArg_1 encode_f_2 encode_i_1 encode_g_1 encode_a g_1 Due to the following rules being added: encArg(v0) -> a [0] encode_f(v0, v1) -> a [0] encode_i(v0) -> a [0] encode_g(v0) -> a [0] encode_a -> a [0] g(v0) -> a [0] And the following fresh constants: none ---------------------------------------- (26) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, x) -> f(i(x), g(g(x))) [1] f(x, y) -> x [1] g(x) -> i(x) [1] f(x, i(x)) -> f(x, x) [1] f(i(x), i(c_g(x))) -> a [1] encArg(i(x_1)) -> i(encArg(x_1)) [0] encArg(a) -> a [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_g(x_1)) -> g(encArg(x_1)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_i(x_1) -> i(encArg(x_1)) [0] encode_g(x_1) -> g(encArg(x_1)) [0] encode_a -> a [0] g(x0) -> c_g(x0) [0] encArg(v0) -> a [0] encode_f(v0, v1) -> a [0] encode_i(v0) -> a [0] encode_g(v0) -> a [0] encode_a -> a [0] g(v0) -> a [0] The TRS has the following type information: f :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g i :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g g :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g c_g :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g a :: i:c_g:a:cons_f:cons_g encArg :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g cons_f :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g cons_g :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g encode_f :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g encode_i :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g encode_g :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g encode_a :: i:c_g:a:cons_f:cons_g Rewrite Strategy: INNERMOST ---------------------------------------- (27) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (28) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, x) -> f(i(x), g(i(x))) [2] f(x, x) -> f(i(x), g(c_g(x))) [1] f(x, x) -> f(i(x), g(a)) [1] f(x, y) -> x [1] g(x) -> i(x) [1] f(x, i(x)) -> f(x, x) [1] f(i(x), i(c_g(x))) -> a [1] encArg(i(x_1)) -> i(encArg(x_1)) [0] encArg(a) -> a [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_g(i(x_117))) -> g(i(encArg(x_117))) [0] encArg(cons_g(a)) -> g(a) [0] encArg(cons_g(cons_f(x_118, x_25))) -> g(f(encArg(x_118), encArg(x_25))) [0] encArg(cons_g(cons_g(x_119))) -> g(g(encArg(x_119))) [0] encArg(cons_g(x_1)) -> g(a) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_i(x_1) -> i(encArg(x_1)) [0] encode_g(i(x_138)) -> g(i(encArg(x_138))) [0] encode_g(a) -> g(a) [0] encode_g(cons_f(x_139, x_212)) -> g(f(encArg(x_139), encArg(x_212))) [0] encode_g(cons_g(x_140)) -> g(g(encArg(x_140))) [0] encode_g(x_1) -> g(a) [0] encode_a -> a [0] g(x0) -> c_g(x0) [0] encArg(v0) -> a [0] encode_f(v0, v1) -> a [0] encode_i(v0) -> a [0] encode_g(v0) -> a [0] encode_a -> a [0] g(v0) -> a [0] The TRS has the following type information: f :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g i :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g g :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g c_g :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g a :: i:c_g:a:cons_f:cons_g encArg :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g cons_f :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g cons_g :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g encode_f :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g encode_i :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g encode_g :: i:c_g:a:cons_f:cons_g -> i:c_g:a:cons_f:cons_g encode_a :: i:c_g:a:cons_f:cons_g Rewrite Strategy: INNERMOST ---------------------------------------- (29) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: a => 0 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(x_119))) :|: z = 1 + (1 + x_119), x_119 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_118), encArg(x_25))) :|: z = 1 + (1 + x_118 + x_25), x_25 >= 0, x_118 >= 0 encArg(z) -{ 0 }-> g(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> g(0) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> g(1 + encArg(x_117)) :|: z = 1 + (1 + x_117), x_117 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) :|: z = 1 + x_1, x_1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_g(z) -{ 0 }-> g(g(encArg(x_140))) :|: z = 1 + x_140, x_140 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_139), encArg(x_212))) :|: z = 1 + x_139 + x_212, x_212 >= 0, x_139 >= 0 encode_g(z) -{ 0 }-> g(0) :|: z = 0 encode_g(z) -{ 0 }-> g(0) :|: x_1 >= 0, z = x_1 encode_g(z) -{ 0 }-> g(1 + encArg(x_138)) :|: x_138 >= 0, z = 1 + x_138 encode_g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_i(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_i(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 f(z, z') -{ 1 }-> x :|: x >= 0, y >= 0, z = x, z' = y f(z, z') -{ 1 }-> f(x, x) :|: z' = 1 + x, x >= 0, z = x f(z, z') -{ 1 }-> f(1 + x, g(0)) :|: z' = x, x >= 0, z = x f(z, z') -{ 2 }-> f(1 + x, g(1 + x)) :|: z' = x, x >= 0, z = x f(z, z') -{ 1 }-> f(1 + x, g(1 + x)) :|: z' = x, x >= 0, z = x f(z, z') -{ 1 }-> 0 :|: x >= 0, z = 1 + x, z' = 1 + (1 + x) g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 g(z) -{ 1 }-> 1 + x :|: x >= 0, z = x g(z) -{ 0 }-> 1 + x0 :|: z = x0, x0 >= 0 ---------------------------------------- (31) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: g(z) -{ 0 }-> 1 + x0 :|: z = x0, x0 >= 0 g(z) -{ 1 }-> 1 + x :|: x >= 0, z = x g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(x_119))) :|: z = 1 + (1 + x_119), x_119 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_118), encArg(x_25))) :|: z = 1 + (1 + x_118 + x_25), x_25 >= 0, x_118 >= 0 encArg(z) -{ 0 }-> g(1 + encArg(x_117)) :|: z = 1 + (1 + x_117), x_117 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z = 1 + x_1, x_1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 1 + x :|: z = 1 + 0, x >= 0, 0 = x encArg(z) -{ 1 }-> 1 + x :|: z = 1 + x_1, x_1 >= 0, x >= 0, 0 = x encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + x_1, x_1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) :|: z = 1 + x_1, x_1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_g(z) -{ 0 }-> g(g(encArg(x_140))) :|: z = 1 + x_140, x_140 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_139), encArg(x_212))) :|: z = 1 + x_139 + x_212, x_212 >= 0, x_139 >= 0 encode_g(z) -{ 0 }-> g(1 + encArg(x_138)) :|: x_138 >= 0, z = 1 + x_138 encode_g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: x_1 >= 0, z = x_1, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 1 + x :|: z = 0, x >= 0, 0 = x encode_g(z) -{ 1 }-> 1 + x :|: x_1 >= 0, z = x_1, x >= 0, 0 = x encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: x_1 >= 0, z = x_1, 0 = x0, x0 >= 0 encode_i(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_i(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 f(z, z') -{ 1 }-> x :|: x >= 0, y >= 0, z = x, z' = y f(z, z') -{ 1 }-> f(x, x) :|: z' = 1 + x, x >= 0, z = x f(z, z') -{ 2 }-> f(1 + x, 0) :|: z' = x, x >= 0, z = x, v0 >= 0, 1 + x = v0 f(z, z') -{ 1 }-> f(1 + x, 0) :|: z' = x, x >= 0, z = x, v0 >= 0, 1 + x = v0 f(z, z') -{ 1 }-> f(1 + x, 0) :|: z' = x, x >= 0, z = x, v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(1 + x, 1 + x') :|: z' = x, x >= 0, z = x, x' >= 0, 1 + x = x' f(z, z') -{ 2 }-> f(1 + x, 1 + x') :|: z' = x, x >= 0, z = x, x' >= 0, 1 + x = x' f(z, z') -{ 2 }-> f(1 + x, 1 + x') :|: z' = x, x >= 0, z = x, x' >= 0, 0 = x' f(z, z') -{ 2 }-> f(1 + x, 1 + x0) :|: z' = x, x >= 0, z = x, 1 + x = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + x, 1 + x0) :|: z' = x, x >= 0, z = x, 1 + x = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + x, 1 + x0) :|: z' = x, x >= 0, z = x, 0 = x0, x0 >= 0 f(z, z') -{ 1 }-> 0 :|: x >= 0, z = 1 + x, z' = 1 + (1 + x) g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 g(z) -{ 1 }-> 1 + x :|: x >= 0, z = x g(z) -{ 0 }-> 1 + x0 :|: z = x0, x0 >= 0 ---------------------------------------- (33) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_118), encArg(x_25))) :|: z = 1 + (1 + x_118 + x_25), x_25 >= 0, x_118 >= 0 encArg(z) -{ 0 }-> g(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 1 + x :|: z = 1 + 0, x >= 0, 0 = x encArg(z) -{ 1 }-> 1 + x :|: z - 1 >= 0, x >= 0, 0 = x encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_139), encArg(x_212))) :|: z = 1 + x_139 + x_212, x_212 >= 0, x_139 >= 0 encode_g(z) -{ 0 }-> g(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 1 + x :|: z = 0, x >= 0, 0 = x encode_g(z) -{ 1 }-> 1 + x :|: z >= 0, x >= 0, 0 = x encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_i(z) -{ 0 }-> 0 :|: z >= 0 encode_i(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 }-> z :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> f(z' - 1, z' - 1) :|: z' - 1 >= 0, z = z' - 1 f(z, z') -{ 2 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 0 = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 0 = x0, x0 >= 0 f(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 1 + (1 + (z - 1)) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 1 }-> 1 + z :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 ---------------------------------------- (35) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { encode_a } { g } { f } { encArg } { encode_i } { encode_f } { encode_g } ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_118), encArg(x_25))) :|: z = 1 + (1 + x_118 + x_25), x_25 >= 0, x_118 >= 0 encArg(z) -{ 0 }-> g(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 1 + x :|: z = 1 + 0, x >= 0, 0 = x encArg(z) -{ 1 }-> 1 + x :|: z - 1 >= 0, x >= 0, 0 = x encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_139), encArg(x_212))) :|: z = 1 + x_139 + x_212, x_212 >= 0, x_139 >= 0 encode_g(z) -{ 0 }-> g(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 1 + x :|: z = 0, x >= 0, 0 = x encode_g(z) -{ 1 }-> 1 + x :|: z >= 0, x >= 0, 0 = x encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_i(z) -{ 0 }-> 0 :|: z >= 0 encode_i(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 }-> z :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> f(z' - 1, z' - 1) :|: z' - 1 >= 0, z = z' - 1 f(z, z') -{ 2 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 0 = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 0 = x0, x0 >= 0 f(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 1 + (1 + (z - 1)) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 1 }-> 1 + z :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_a}, {g}, {f}, {encArg}, {encode_i}, {encode_f}, {encode_g} ---------------------------------------- (37) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_118), encArg(x_25))) :|: z = 1 + (1 + x_118 + x_25), x_25 >= 0, x_118 >= 0 encArg(z) -{ 0 }-> g(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 1 + x :|: z = 1 + 0, x >= 0, 0 = x encArg(z) -{ 1 }-> 1 + x :|: z - 1 >= 0, x >= 0, 0 = x encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_139), encArg(x_212))) :|: z = 1 + x_139 + x_212, x_212 >= 0, x_139 >= 0 encode_g(z) -{ 0 }-> g(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 1 + x :|: z = 0, x >= 0, 0 = x encode_g(z) -{ 1 }-> 1 + x :|: z >= 0, x >= 0, 0 = x encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_i(z) -{ 0 }-> 0 :|: z >= 0 encode_i(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 }-> z :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> f(z' - 1, z' - 1) :|: z' - 1 >= 0, z = z' - 1 f(z, z') -{ 2 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 0 = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 0 = x0, x0 >= 0 f(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 1 + (1 + (z - 1)) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 1 }-> 1 + z :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_a}, {g}, {f}, {encArg}, {encode_i}, {encode_f}, {encode_g} ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_a after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_118), encArg(x_25))) :|: z = 1 + (1 + x_118 + x_25), x_25 >= 0, x_118 >= 0 encArg(z) -{ 0 }-> g(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 1 + x :|: z = 1 + 0, x >= 0, 0 = x encArg(z) -{ 1 }-> 1 + x :|: z - 1 >= 0, x >= 0, 0 = x encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_139), encArg(x_212))) :|: z = 1 + x_139 + x_212, x_212 >= 0, x_139 >= 0 encode_g(z) -{ 0 }-> g(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 1 + x :|: z = 0, x >= 0, 0 = x encode_g(z) -{ 1 }-> 1 + x :|: z >= 0, x >= 0, 0 = x encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_i(z) -{ 0 }-> 0 :|: z >= 0 encode_i(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 }-> z :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> f(z' - 1, z' - 1) :|: z' - 1 >= 0, z = z' - 1 f(z, z') -{ 2 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 0 = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 0 = x0, x0 >= 0 f(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 1 + (1 + (z - 1)) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 1 }-> 1 + z :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {encode_a}, {g}, {f}, {encArg}, {encode_i}, {encode_f}, {encode_g} Previous analysis results are: encode_a: runtime: ?, size: O(1) [0] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_a after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_118), encArg(x_25))) :|: z = 1 + (1 + x_118 + x_25), x_25 >= 0, x_118 >= 0 encArg(z) -{ 0 }-> g(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 1 + x :|: z = 1 + 0, x >= 0, 0 = x encArg(z) -{ 1 }-> 1 + x :|: z - 1 >= 0, x >= 0, 0 = x encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_139), encArg(x_212))) :|: z = 1 + x_139 + x_212, x_212 >= 0, x_139 >= 0 encode_g(z) -{ 0 }-> g(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 1 + x :|: z = 0, x >= 0, 0 = x encode_g(z) -{ 1 }-> 1 + x :|: z >= 0, x >= 0, 0 = x encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_i(z) -{ 0 }-> 0 :|: z >= 0 encode_i(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 }-> z :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> f(z' - 1, z' - 1) :|: z' - 1 >= 0, z = z' - 1 f(z, z') -{ 2 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 0 = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 0 = x0, x0 >= 0 f(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 1 + (1 + (z - 1)) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 1 }-> 1 + z :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {g}, {f}, {encArg}, {encode_i}, {encode_f}, {encode_g} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (43) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_118), encArg(x_25))) :|: z = 1 + (1 + x_118 + x_25), x_25 >= 0, x_118 >= 0 encArg(z) -{ 0 }-> g(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 1 + x :|: z = 1 + 0, x >= 0, 0 = x encArg(z) -{ 1 }-> 1 + x :|: z - 1 >= 0, x >= 0, 0 = x encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_139), encArg(x_212))) :|: z = 1 + x_139 + x_212, x_212 >= 0, x_139 >= 0 encode_g(z) -{ 0 }-> g(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 1 + x :|: z = 0, x >= 0, 0 = x encode_g(z) -{ 1 }-> 1 + x :|: z >= 0, x >= 0, 0 = x encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_i(z) -{ 0 }-> 0 :|: z >= 0 encode_i(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 }-> z :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> f(z' - 1, z' - 1) :|: z' - 1 >= 0, z = z' - 1 f(z, z') -{ 2 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 0 = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 0 = x0, x0 >= 0 f(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 1 + (1 + (z - 1)) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 1 }-> 1 + z :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {g}, {f}, {encArg}, {encode_i}, {encode_f}, {encode_g} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_118), encArg(x_25))) :|: z = 1 + (1 + x_118 + x_25), x_25 >= 0, x_118 >= 0 encArg(z) -{ 0 }-> g(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 1 + x :|: z = 1 + 0, x >= 0, 0 = x encArg(z) -{ 1 }-> 1 + x :|: z - 1 >= 0, x >= 0, 0 = x encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_139), encArg(x_212))) :|: z = 1 + x_139 + x_212, x_212 >= 0, x_139 >= 0 encode_g(z) -{ 0 }-> g(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 1 + x :|: z = 0, x >= 0, 0 = x encode_g(z) -{ 1 }-> 1 + x :|: z >= 0, x >= 0, 0 = x encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_i(z) -{ 0 }-> 0 :|: z >= 0 encode_i(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 }-> z :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> f(z' - 1, z' - 1) :|: z' - 1 >= 0, z = z' - 1 f(z, z') -{ 2 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 0 = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 0 = x0, x0 >= 0 f(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 1 + (1 + (z - 1)) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 1 }-> 1 + z :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {g}, {f}, {encArg}, {encode_i}, {encode_f}, {encode_g} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] g: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_118), encArg(x_25))) :|: z = 1 + (1 + x_118 + x_25), x_25 >= 0, x_118 >= 0 encArg(z) -{ 0 }-> g(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 1 + x :|: z = 1 + 0, x >= 0, 0 = x encArg(z) -{ 1 }-> 1 + x :|: z - 1 >= 0, x >= 0, 0 = x encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_139), encArg(x_212))) :|: z = 1 + x_139 + x_212, x_212 >= 0, x_139 >= 0 encode_g(z) -{ 0 }-> g(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 1 + x :|: z = 0, x >= 0, 0 = x encode_g(z) -{ 1 }-> 1 + x :|: z >= 0, x >= 0, 0 = x encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_i(z) -{ 0 }-> 0 :|: z >= 0 encode_i(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 }-> z :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> f(z' - 1, z' - 1) :|: z' - 1 >= 0, z = z' - 1 f(z, z') -{ 2 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 0 = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 0 = x0, x0 >= 0 f(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 1 + (1 + (z - 1)) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 1 }-> 1 + z :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_i}, {encode_f}, {encode_g} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] g: runtime: O(1) [1], size: O(n^1) [1 + z] ---------------------------------------- (49) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_118), encArg(x_25))) :|: z = 1 + (1 + x_118 + x_25), x_25 >= 0, x_118 >= 0 encArg(z) -{ 0 }-> g(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 1 + x :|: z = 1 + 0, x >= 0, 0 = x encArg(z) -{ 1 }-> 1 + x :|: z - 1 >= 0, x >= 0, 0 = x encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_139), encArg(x_212))) :|: z = 1 + x_139 + x_212, x_212 >= 0, x_139 >= 0 encode_g(z) -{ 0 }-> g(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 1 + x :|: z = 0, x >= 0, 0 = x encode_g(z) -{ 1 }-> 1 + x :|: z >= 0, x >= 0, 0 = x encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_i(z) -{ 0 }-> 0 :|: z >= 0 encode_i(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 }-> z :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> f(z' - 1, z' - 1) :|: z' - 1 >= 0, z = z' - 1 f(z, z') -{ 2 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 0 = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 0 = x0, x0 >= 0 f(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 1 + (1 + (z - 1)) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 1 }-> 1 + z :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_i}, {encode_f}, {encode_g} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] g: runtime: O(1) [1], size: O(n^1) [1 + z] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_118), encArg(x_25))) :|: z = 1 + (1 + x_118 + x_25), x_25 >= 0, x_118 >= 0 encArg(z) -{ 0 }-> g(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 1 + x :|: z = 1 + 0, x >= 0, 0 = x encArg(z) -{ 1 }-> 1 + x :|: z - 1 >= 0, x >= 0, 0 = x encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_139), encArg(x_212))) :|: z = 1 + x_139 + x_212, x_212 >= 0, x_139 >= 0 encode_g(z) -{ 0 }-> g(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 1 + x :|: z = 0, x >= 0, 0 = x encode_g(z) -{ 1 }-> 1 + x :|: z >= 0, x >= 0, 0 = x encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_i(z) -{ 0 }-> 0 :|: z >= 0 encode_i(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 }-> z :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> f(z' - 1, z' - 1) :|: z' - 1 >= 0, z = z' - 1 f(z, z') -{ 2 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 0 = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 0 = x0, x0 >= 0 f(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 1 + (1 + (z - 1)) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 1 }-> 1 + z :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_i}, {encode_f}, {encode_g} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] g: runtime: O(1) [1], size: O(n^1) [1 + z] f: runtime: ?, size: INF ---------------------------------------- (53) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_118), encArg(x_25))) :|: z = 1 + (1 + x_118 + x_25), x_25 >= 0, x_118 >= 0 encArg(z) -{ 0 }-> g(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 0 :|: z = 1 + 0, v0 >= 0, 0 = v0 encArg(z) -{ 0 }-> 0 :|: z - 1 >= 0, v0 >= 0, 0 = v0 encArg(z) -{ 1 }-> 1 + x :|: z = 1 + 0, x >= 0, 0 = x encArg(z) -{ 1 }-> 1 + x :|: z - 1 >= 0, x >= 0, 0 = x encArg(z) -{ 0 }-> 1 + x0 :|: z = 1 + 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + x0 :|: z - 1 >= 0, 0 = x0, x0 >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_139), encArg(x_212))) :|: z = 1 + x_139 + x_212, x_212 >= 0, x_139 >= 0 encode_g(z) -{ 0 }-> g(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> 0 :|: z = 0, v0 >= 0, 0 = v0 encode_g(z) -{ 0 }-> 0 :|: z >= 0, v0 >= 0, 0 = v0 encode_g(z) -{ 1 }-> 1 + x :|: z = 0, x >= 0, 0 = x encode_g(z) -{ 1 }-> 1 + x :|: z >= 0, x >= 0, 0 = x encode_g(z) -{ 0 }-> 1 + x0 :|: z = 0, 0 = x0, x0 >= 0 encode_g(z) -{ 0 }-> 1 + x0 :|: z >= 0, 0 = x0, x0 >= 0 encode_i(z) -{ 0 }-> 0 :|: z >= 0 encode_i(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z, z') -{ 1 }-> z :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> f(z' - 1, z' - 1) :|: z' - 1 >= 0, z = z' - 1 f(z, z') -{ 2 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 1 + z' = v0 f(z, z') -{ 1 }-> f(1 + z', 0) :|: z' >= 0, z = z', v0 >= 0, 0 = v0 f(z, z') -{ 3 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 1 + z' = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x') :|: z' >= 0, z = z', x' >= 0, 0 = x' f(z, z') -{ 2 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 1 + z' = x0, x0 >= 0 f(z, z') -{ 1 }-> f(1 + z', 1 + x0) :|: z' >= 0, z = z', 0 = x0, x0 >= 0 f(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 1 + (1 + (z - 1)) g(z) -{ 0 }-> 0 :|: z >= 0 g(z) -{ 1 }-> 1 + z :|: z >= 0 g(z) -{ 0 }-> 1 + z :|: z >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_i}, {encode_f}, {encode_g} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] g: runtime: O(1) [1], size: O(n^1) [1 + z] f: runtime: INF, size: INF ---------------------------------------- (55) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: encArg(v0) -> null_encArg [0] encode_f(v0, v1) -> null_encode_f [0] encode_i(v0) -> null_encode_i [0] encode_g(v0) -> null_encode_g [0] encode_a -> null_encode_a [0] g(v0) -> null_g [0] And the following fresh constants: null_encArg, null_encode_f, null_encode_i, null_encode_g, null_encode_a, null_g ---------------------------------------- (56) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, x) -> f(i(x), g(g(x))) [1] f(x, y) -> x [1] g(x) -> i(x) [1] f(x, i(x)) -> f(x, x) [1] f(i(x), i(c_g(x))) -> a [1] encArg(i(x_1)) -> i(encArg(x_1)) [0] encArg(a) -> a [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_g(x_1)) -> g(encArg(x_1)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_i(x_1) -> i(encArg(x_1)) [0] encode_g(x_1) -> g(encArg(x_1)) [0] encode_a -> a [0] g(x0) -> c_g(x0) [0] encArg(v0) -> null_encArg [0] encode_f(v0, v1) -> null_encode_f [0] encode_i(v0) -> null_encode_i [0] encode_g(v0) -> null_encode_g [0] encode_a -> null_encode_a [0] g(v0) -> null_g [0] The TRS has the following type information: f :: i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g -> i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g -> i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g i :: i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g -> i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g g :: i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g -> i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g c_g :: i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g -> i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g a :: i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g encArg :: i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g -> i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g cons_f :: i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g -> i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g -> i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g cons_g :: i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g -> i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g encode_f :: i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g -> i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g -> i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g encode_i :: i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g -> i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g encode_g :: i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g -> i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g encode_a :: i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g null_encArg :: i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g null_encode_f :: i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g null_encode_i :: i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g null_encode_g :: i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g null_encode_a :: i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g null_g :: i:c_g:a:cons_f:cons_g:null_encArg:null_encode_f:null_encode_i:null_encode_g:null_encode_a:null_g Rewrite Strategy: INNERMOST ---------------------------------------- (57) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: a => 0 null_encArg => 0 null_encode_f => 0 null_encode_i => 0 null_encode_g => 0 null_encode_a => 0 null_g => 0 ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(encArg(x_1)) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) :|: z = 1 + x_1, x_1 >= 0 encode_a -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_g(z) -{ 0 }-> g(encArg(x_1)) :|: x_1 >= 0, z = x_1 encode_g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_i(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_i(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 f(z, z') -{ 1 }-> x :|: x >= 0, y >= 0, z = x, z' = y f(z, z') -{ 1 }-> f(x, x) :|: z' = 1 + x, x >= 0, z = x f(z, z') -{ 1 }-> f(1 + x, g(g(x))) :|: z' = x, x >= 0, z = x f(z, z') -{ 1 }-> 0 :|: x >= 0, z = 1 + x, z' = 1 + (1 + x) g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 g(z) -{ 1 }-> 1 + x :|: x >= 0, z = x g(z) -{ 0 }-> 1 + x0 :|: z = x0, x0 >= 0 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (59) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (60) Obligation: Complexity Dependency Tuples Problem Rules: encArg(i(z0)) -> i(encArg(z0)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_i(z0) -> i(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_a -> a g(z0) -> c_g(z0) g(z0) -> i(z0) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(a) -> c1 ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) ENCODE_F(z0, z1) -> c4(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_I(z0) -> c5(ENCARG(z0)) ENCODE_G(z0) -> c6(G(encArg(z0)), ENCARG(z0)) ENCODE_A -> c7 G(z0) -> c8 G(z0) -> c9 F(z0, z0) -> c10(F(i(z0), g(g(z0))), G(g(z0)), G(z0)) F(z0, z1) -> c11 F(z0, i(z0)) -> c12(F(z0, z0)) F(i(z0), i(c_g(z0))) -> c13 S tuples: G(z0) -> c9 F(z0, z0) -> c10(F(i(z0), g(g(z0))), G(g(z0)), G(z0)) F(z0, z1) -> c11 F(z0, i(z0)) -> c12(F(z0, z0)) F(i(z0), i(c_g(z0))) -> c13 K tuples:none Defined Rule Symbols: f_2, g_1, encArg_1, encode_f_2, encode_i_1, encode_g_1, encode_a Defined Pair Symbols: ENCARG_1, ENCODE_F_2, ENCODE_I_1, ENCODE_G_1, ENCODE_A, G_1, F_2 Compound Symbols: c_1, c1, c2_3, c3_2, c4_3, c5_1, c6_2, c7, c8, c9, c10_3, c11, c12_1, c13 ---------------------------------------- (61) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: ENCODE_I(z0) -> c5(ENCARG(z0)) Removed 3 trailing nodes: G(z0) -> c8 ENCODE_A -> c7 ENCARG(a) -> c1 ---------------------------------------- (62) Obligation: Complexity Dependency Tuples Problem Rules: encArg(i(z0)) -> i(encArg(z0)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_i(z0) -> i(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_a -> a g(z0) -> c_g(z0) g(z0) -> i(z0) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) ENCODE_F(z0, z1) -> c4(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_G(z0) -> c6(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, z0) -> c10(F(i(z0), g(g(z0))), G(g(z0)), G(z0)) F(z0, z1) -> c11 F(z0, i(z0)) -> c12(F(z0, z0)) F(i(z0), i(c_g(z0))) -> c13 S tuples: G(z0) -> c9 F(z0, z0) -> c10(F(i(z0), g(g(z0))), G(g(z0)), G(z0)) F(z0, z1) -> c11 F(z0, i(z0)) -> c12(F(z0, z0)) F(i(z0), i(c_g(z0))) -> c13 K tuples:none Defined Rule Symbols: f_2, g_1, encArg_1, encode_f_2, encode_i_1, encode_g_1, encode_a Defined Pair Symbols: ENCARG_1, ENCODE_F_2, ENCODE_G_1, G_1, F_2 Compound Symbols: c_1, c2_3, c3_2, c4_3, c6_2, c9, c10_3, c11, c12_1, c13 ---------------------------------------- (63) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (64) Obligation: Complexity Dependency Tuples Problem Rules: encArg(i(z0)) -> i(encArg(z0)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_i(z0) -> i(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_a -> a g(z0) -> c_g(z0) g(z0) -> i(z0) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, z0) -> c10(F(i(z0), g(g(z0))), G(g(z0)), G(z0)) F(z0, z1) -> c11 F(z0, i(z0)) -> c12(F(z0, z0)) F(i(z0), i(c_g(z0))) -> c13 ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_F(z0, z1) -> c1(ENCARG(z0)) ENCODE_F(z0, z1) -> c1(ENCARG(z1)) ENCODE_G(z0) -> c1(G(encArg(z0))) ENCODE_G(z0) -> c1(ENCARG(z0)) S tuples: G(z0) -> c9 F(z0, z0) -> c10(F(i(z0), g(g(z0))), G(g(z0)), G(z0)) F(z0, z1) -> c11 F(z0, i(z0)) -> c12(F(z0, z0)) F(i(z0), i(c_g(z0))) -> c13 K tuples:none Defined Rule Symbols: f_2, g_1, encArg_1, encode_f_2, encode_i_1, encode_g_1, encode_a Defined Pair Symbols: ENCARG_1, G_1, F_2, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c_1, c2_3, c3_2, c9, c10_3, c11, c12_1, c13, c1_1 ---------------------------------------- (65) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 3 leading nodes: ENCODE_F(z0, z1) -> c1(ENCARG(z0)) ENCODE_F(z0, z1) -> c1(ENCARG(z1)) ENCODE_G(z0) -> c1(ENCARG(z0)) ---------------------------------------- (66) Obligation: Complexity Dependency Tuples Problem Rules: encArg(i(z0)) -> i(encArg(z0)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_i(z0) -> i(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_a -> a g(z0) -> c_g(z0) g(z0) -> i(z0) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, z0) -> c10(F(i(z0), g(g(z0))), G(g(z0)), G(z0)) F(z0, z1) -> c11 F(z0, i(z0)) -> c12(F(z0, z0)) F(i(z0), i(c_g(z0))) -> c13 ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) S tuples: G(z0) -> c9 F(z0, z0) -> c10(F(i(z0), g(g(z0))), G(g(z0)), G(z0)) F(z0, z1) -> c11 F(z0, i(z0)) -> c12(F(z0, z0)) F(i(z0), i(c_g(z0))) -> c13 K tuples:none Defined Rule Symbols: f_2, g_1, encArg_1, encode_f_2, encode_i_1, encode_g_1, encode_a Defined Pair Symbols: ENCARG_1, G_1, F_2, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c_1, c2_3, c3_2, c9, c10_3, c11, c12_1, c13, c1_1 ---------------------------------------- (67) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) encode_i(z0) -> i(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_a -> a ---------------------------------------- (68) Obligation: Complexity Dependency Tuples Problem Rules: encArg(i(z0)) -> i(encArg(z0)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, z0) -> c10(F(i(z0), g(g(z0))), G(g(z0)), G(z0)) F(z0, z1) -> c11 F(z0, i(z0)) -> c12(F(z0, z0)) F(i(z0), i(c_g(z0))) -> c13 ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) S tuples: G(z0) -> c9 F(z0, z0) -> c10(F(i(z0), g(g(z0))), G(g(z0)), G(z0)) F(z0, z1) -> c11 F(z0, i(z0)) -> c12(F(z0, z0)) F(i(z0), i(c_g(z0))) -> c13 K tuples:none Defined Rule Symbols: encArg_1, f_2, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_2, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c_1, c2_3, c3_2, c9, c10_3, c11, c12_1, c13, c1_1 ---------------------------------------- (69) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(z0, z1) -> c11 F(i(z0), i(c_g(z0))) -> c13 We considered the (Usable) Rules: g(z0) -> c_g(z0) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 encArg(i(z0)) -> i(encArg(z0)) g(z0) -> i(z0) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) And the Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, z0) -> c10(F(i(z0), g(g(z0))), G(g(z0)), G(z0)) F(z0, z1) -> c11 F(z0, i(z0)) -> c12(F(z0, z0)) F(i(z0), i(c_g(z0))) -> c13 ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(ENCARG(x_1)) = x_1 POL(ENCODE_F(x_1, x_2)) = [1] + x_1 POL(ENCODE_G(x_1)) = x_1 POL(F(x_1, x_2)) = [1] + x_2 POL(G(x_1)) = 0 POL(a) = 0 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c10(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c11) = 0 POL(c12(x_1)) = x_1 POL(c13) = 0 POL(c2(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c9) = 0 POL(c_g(x_1)) = x_1 POL(cons_f(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_g(x_1)) = [1] + x_1 POL(encArg(x_1)) = 0 POL(f(x_1, x_2)) = x_1 + x_2 POL(g(x_1)) = x_1 POL(i(x_1)) = x_1 ---------------------------------------- (70) Obligation: Complexity Dependency Tuples Problem Rules: encArg(i(z0)) -> i(encArg(z0)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, z0) -> c10(F(i(z0), g(g(z0))), G(g(z0)), G(z0)) F(z0, z1) -> c11 F(z0, i(z0)) -> c12(F(z0, z0)) F(i(z0), i(c_g(z0))) -> c13 ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) S tuples: G(z0) -> c9 F(z0, z0) -> c10(F(i(z0), g(g(z0))), G(g(z0)), G(z0)) F(z0, i(z0)) -> c12(F(z0, z0)) K tuples: F(z0, z1) -> c11 F(i(z0), i(c_g(z0))) -> c13 Defined Rule Symbols: encArg_1, f_2, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_2, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c_1, c2_3, c3_2, c9, c10_3, c11, c12_1, c13, c1_1 ---------------------------------------- (71) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace F(z0, z0) -> c10(F(i(z0), g(g(z0))), G(g(z0)), G(z0)) by F(x0, x0) -> c10(F(i(x0), c_g(g(x0))), G(g(x0)), G(x0)) F(x0, x0) -> c10(F(i(x0), i(g(x0))), G(g(x0)), G(x0)) F(z0, z0) -> c10(F(i(z0), g(c_g(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) ---------------------------------------- (72) Obligation: Complexity Dependency Tuples Problem Rules: encArg(i(z0)) -> i(encArg(z0)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, z1) -> c11 F(z0, i(z0)) -> c12(F(z0, z0)) F(i(z0), i(c_g(z0))) -> c13 ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) F(x0, x0) -> c10(F(i(x0), c_g(g(x0))), G(g(x0)), G(x0)) F(x0, x0) -> c10(F(i(x0), i(g(x0))), G(g(x0)), G(x0)) F(z0, z0) -> c10(F(i(z0), g(c_g(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) S tuples: G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) F(x0, x0) -> c10(F(i(x0), c_g(g(x0))), G(g(x0)), G(x0)) F(x0, x0) -> c10(F(i(x0), i(g(x0))), G(g(x0)), G(x0)) F(z0, z0) -> c10(F(i(z0), g(c_g(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) K tuples: F(z0, z1) -> c11 F(i(z0), i(c_g(z0))) -> c13 Defined Rule Symbols: encArg_1, f_2, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_2, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c_1, c2_3, c3_2, c9, c11, c12_1, c13, c1_1, c10_3 ---------------------------------------- (73) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing nodes: F(i(z0), i(c_g(z0))) -> c13 F(z0, z1) -> c11 ---------------------------------------- (74) Obligation: Complexity Dependency Tuples Problem Rules: encArg(i(z0)) -> i(encArg(z0)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) F(x0, x0) -> c10(F(i(x0), c_g(g(x0))), G(g(x0)), G(x0)) F(x0, x0) -> c10(F(i(x0), i(g(x0))), G(g(x0)), G(x0)) F(z0, z0) -> c10(F(i(z0), g(c_g(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) S tuples: G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) F(x0, x0) -> c10(F(i(x0), c_g(g(x0))), G(g(x0)), G(x0)) F(x0, x0) -> c10(F(i(x0), i(g(x0))), G(g(x0)), G(x0)) F(z0, z0) -> c10(F(i(z0), g(c_g(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) K tuples:none Defined Rule Symbols: encArg_1, f_2, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_2, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c_1, c2_3, c3_2, c9, c12_1, c1_1, c10_3 ---------------------------------------- (75) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (76) Obligation: Complexity Dependency Tuples Problem Rules: encArg(i(z0)) -> i(encArg(z0)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) F(x0, x0) -> c10(F(i(x0), i(g(x0))), G(g(x0)), G(x0)) F(z0, z0) -> c10(F(i(z0), g(c_g(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(G(g(x0)), G(x0)) S tuples: G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) F(x0, x0) -> c10(F(i(x0), i(g(x0))), G(g(x0)), G(x0)) F(z0, z0) -> c10(F(i(z0), g(c_g(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(G(g(x0)), G(x0)) K tuples:none Defined Rule Symbols: encArg_1, f_2, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_2, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c_1, c2_3, c3_2, c9, c12_1, c1_1, c10_3, c10_2 ---------------------------------------- (77) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (78) Obligation: Complexity Dependency Tuples Problem Rules: encArg(i(z0)) -> i(encArg(z0)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) F(x0, x0) -> c10(F(i(x0), i(g(x0))), G(g(x0)), G(x0)) F(z0, z0) -> c10(F(i(z0), g(c_g(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) S tuples: G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) F(x0, x0) -> c10(F(i(x0), i(g(x0))), G(g(x0)), G(x0)) F(z0, z0) -> c10(F(i(z0), g(c_g(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) K tuples:none Defined Rule Symbols: encArg_1, f_2, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_2, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c_1, c2_3, c3_2, c9, c12_1, c1_1, c10_3, c4_1 ---------------------------------------- (79) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) We considered the (Usable) Rules: g(z0) -> c_g(z0) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 encArg(i(z0)) -> i(encArg(z0)) g(z0) -> i(z0) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) And the Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) F(x0, x0) -> c10(F(i(x0), i(g(x0))), G(g(x0)), G(x0)) F(z0, z0) -> c10(F(i(z0), g(c_g(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) The order we found is given by the following interpretation: Polynomial interpretation : POL(ENCARG(x_1)) = x_1 POL(ENCODE_F(x_1, x_2)) = [1] POL(ENCODE_G(x_1)) = x_1 POL(F(x_1, x_2)) = [1] + x_2 POL(G(x_1)) = 0 POL(a) = 0 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c10(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c12(x_1)) = x_1 POL(c2(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1)) = x_1 POL(c9) = 0 POL(c_g(x_1)) = x_1 POL(cons_f(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_g(x_1)) = [1] + x_1 POL(encArg(x_1)) = 0 POL(f(x_1, x_2)) = x_1 + x_2 POL(g(x_1)) = x_1 POL(i(x_1)) = x_1 ---------------------------------------- (80) Obligation: Complexity Dependency Tuples Problem Rules: encArg(i(z0)) -> i(encArg(z0)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) F(x0, x0) -> c10(F(i(x0), i(g(x0))), G(g(x0)), G(x0)) F(z0, z0) -> c10(F(i(z0), g(c_g(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) S tuples: G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) F(x0, x0) -> c10(F(i(x0), i(g(x0))), G(g(x0)), G(x0)) F(z0, z0) -> c10(F(i(z0), g(c_g(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) K tuples: F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) Defined Rule Symbols: encArg_1, f_2, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_2, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c_1, c2_3, c3_2, c9, c12_1, c1_1, c10_3, c4_1 ---------------------------------------- (81) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace F(x0, x0) -> c10(F(i(x0), i(g(x0))), G(g(x0)), G(x0)) by F(z0, z0) -> c10(F(i(z0), i(c_g(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(G(g(x0))) ---------------------------------------- (82) Obligation: Complexity Dependency Tuples Problem Rules: encArg(i(z0)) -> i(encArg(z0)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) F(z0, z0) -> c10(F(i(z0), g(c_g(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) F(z0, z0) -> c10(F(i(z0), i(c_g(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(G(g(x0))) S tuples: G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) F(z0, z0) -> c10(F(i(z0), g(c_g(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), i(c_g(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(G(g(x0))) K tuples: F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) Defined Rule Symbols: encArg_1, f_2, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_2, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c_1, c2_3, c3_2, c9, c12_1, c1_1, c10_3, c4_1, c10_1 ---------------------------------------- (83) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (84) Obligation: Complexity Dependency Tuples Problem Rules: encArg(i(z0)) -> i(encArg(z0)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) F(z0, z0) -> c10(F(i(z0), g(c_g(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c10(G(g(z0)), G(z0)) S tuples: G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) F(z0, z0) -> c10(F(i(z0), g(c_g(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c10(G(g(z0)), G(z0)) K tuples: F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) Defined Rule Symbols: encArg_1, f_2, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_2, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c_1, c2_3, c3_2, c9, c12_1, c1_1, c10_3, c4_1, c10_1, c10_2 ---------------------------------------- (85) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (86) Obligation: Complexity Dependency Tuples Problem Rules: encArg(i(z0)) -> i(encArg(z0)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) F(z0, z0) -> c10(F(i(z0), g(c_g(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) S tuples: G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) F(z0, z0) -> c10(F(i(z0), g(c_g(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) K tuples: F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) Defined Rule Symbols: encArg_1, f_2, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_2, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c_1, c2_3, c3_2, c9, c12_1, c1_1, c10_3, c4_1, c10_1, c5_1 ---------------------------------------- (87) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) We considered the (Usable) Rules: g(z0) -> c_g(z0) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 encArg(i(z0)) -> i(encArg(z0)) g(z0) -> i(z0) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) And the Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) F(z0, z0) -> c10(F(i(z0), g(c_g(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) The order we found is given by the following interpretation: Polynomial interpretation : POL(ENCARG(x_1)) = x_1 POL(ENCODE_F(x_1, x_2)) = [1] POL(ENCODE_G(x_1)) = x_1 POL(F(x_1, x_2)) = [1] + x_2 POL(G(x_1)) = 0 POL(a) = 0 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c10(x_1)) = x_1 POL(c10(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c12(x_1)) = x_1 POL(c2(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1)) = x_1 POL(c5(x_1)) = x_1 POL(c9) = 0 POL(c_g(x_1)) = x_1 POL(cons_f(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_g(x_1)) = [1] + x_1 POL(encArg(x_1)) = 0 POL(f(x_1, x_2)) = x_1 + x_2 POL(g(x_1)) = x_1 POL(i(x_1)) = x_1 ---------------------------------------- (88) Obligation: Complexity Dependency Tuples Problem Rules: encArg(i(z0)) -> i(encArg(z0)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) F(z0, z0) -> c10(F(i(z0), g(c_g(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) S tuples: G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) F(z0, z0) -> c10(F(i(z0), g(c_g(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) K tuples: F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) Defined Rule Symbols: encArg_1, f_2, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_2, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c_1, c2_3, c3_2, c9, c12_1, c1_1, c10_3, c4_1, c10_1, c5_1 ---------------------------------------- (89) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace F(z0, z0) -> c10(F(i(z0), g(c_g(z0))), G(g(z0)), G(z0)) by F(x0, x0) -> c10(F(i(x0), c_g(c_g(x0))), G(g(x0)), G(x0)) F(x0, x0) -> c10(F(i(x0), i(c_g(x0))), G(g(x0)), G(x0)) F(x0, x0) -> c10(G(g(x0)), G(x0)) ---------------------------------------- (90) Obligation: Complexity Dependency Tuples Problem Rules: encArg(i(z0)) -> i(encArg(z0)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) F(x0, x0) -> c10(F(i(x0), c_g(c_g(x0))), G(g(x0)), G(x0)) F(x0, x0) -> c10(F(i(x0), i(c_g(x0))), G(g(x0)), G(x0)) F(x0, x0) -> c10(G(g(x0)), G(x0)) S tuples: G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(F(i(x0), c_g(c_g(x0))), G(g(x0)), G(x0)) F(x0, x0) -> c10(F(i(x0), i(c_g(x0))), G(g(x0)), G(x0)) F(x0, x0) -> c10(G(g(x0)), G(x0)) K tuples: F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) Defined Rule Symbols: encArg_1, f_2, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_2, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c_1, c2_3, c3_2, c9, c12_1, c1_1, c10_3, c4_1, c10_1, c5_1, c10_2 ---------------------------------------- (91) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing tuple parts ---------------------------------------- (92) Obligation: Complexity Dependency Tuples Problem Rules: encArg(i(z0)) -> i(encArg(z0)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) F(x0, x0) -> c10(G(g(x0)), G(x0)) S tuples: G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(G(g(x0)), G(x0)) K tuples: F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) Defined Rule Symbols: encArg_1, f_2, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_2, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c_1, c2_3, c3_2, c9, c12_1, c1_1, c10_3, c4_1, c10_1, c5_1, c10_2 ---------------------------------------- (93) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (94) Obligation: Complexity Dependency Tuples Problem Rules: encArg(i(z0)) -> i(encArg(z0)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) F(x0, x0) -> c6(G(g(x0))) F(x0, x0) -> c6(G(x0)) S tuples: G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c6(G(g(x0))) F(x0, x0) -> c6(G(x0)) K tuples: F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) Defined Rule Symbols: encArg_1, f_2, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_2, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c_1, c2_3, c3_2, c9, c12_1, c1_1, c10_3, c4_1, c10_1, c5_1, c6_1 ---------------------------------------- (95) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(x0, x0) -> c6(G(g(x0))) F(x0, x0) -> c6(G(x0)) We considered the (Usable) Rules:none And the Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) F(x0, x0) -> c6(G(g(x0))) F(x0, x0) -> c6(G(x0)) The order we found is given by the following interpretation: Polynomial interpretation : POL(ENCARG(x_1)) = x_1 POL(ENCODE_F(x_1, x_2)) = [1] POL(ENCODE_G(x_1)) = 0 POL(F(x_1, x_2)) = [1] POL(G(x_1)) = 0 POL(a) = [3] POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c10(x_1)) = x_1 POL(c10(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c12(x_1)) = x_1 POL(c2(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1)) = x_1 POL(c5(x_1)) = x_1 POL(c6(x_1)) = x_1 POL(c9) = 0 POL(c_g(x_1)) = [3] + x_1 POL(cons_f(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_g(x_1)) = x_1 POL(encArg(x_1)) = [3]x_1 POL(f(x_1, x_2)) = [3] POL(g(x_1)) = 0 POL(i(x_1)) = x_1 ---------------------------------------- (96) Obligation: Complexity Dependency Tuples Problem Rules: encArg(i(z0)) -> i(encArg(z0)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) F(x0, x0) -> c6(G(g(x0))) F(x0, x0) -> c6(G(x0)) S tuples: G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) K tuples: F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) F(x0, x0) -> c6(G(g(x0))) F(x0, x0) -> c6(G(x0)) Defined Rule Symbols: encArg_1, f_2, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_2, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c_1, c2_3, c3_2, c9, c12_1, c1_1, c10_3, c4_1, c10_1, c5_1, c6_1 ---------------------------------------- (97) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace F(z0, z0) -> c10(F(i(z0), g(i(z0))), G(g(z0)), G(z0)) by F(x0, x0) -> c10(F(i(x0), c_g(i(x0))), G(g(x0)), G(x0)) F(x0, x0) -> c10(F(i(x0), i(i(x0))), G(g(x0)), G(x0)) F(x0, x0) -> c10(G(g(x0)), G(x0)) ---------------------------------------- (98) Obligation: Complexity Dependency Tuples Problem Rules: encArg(i(z0)) -> i(encArg(z0)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) F(x0, x0) -> c6(G(g(x0))) F(x0, x0) -> c6(G(x0)) F(x0, x0) -> c10(F(i(x0), c_g(i(x0))), G(g(x0)), G(x0)) F(x0, x0) -> c10(G(g(x0)), G(x0)) S tuples: G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(F(i(x0), c_g(i(x0))), G(g(x0)), G(x0)) F(x0, x0) -> c10(G(g(x0)), G(x0)) K tuples: F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) F(x0, x0) -> c6(G(g(x0))) F(x0, x0) -> c6(G(x0)) Defined Rule Symbols: encArg_1, f_2, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_2, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c_1, c2_3, c3_2, c9, c12_1, c1_1, c4_1, c10_3, c10_1, c5_1, c6_1, c10_2 ---------------------------------------- (99) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (100) Obligation: Complexity Dependency Tuples Problem Rules: encArg(i(z0)) -> i(encArg(z0)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) F(x0, x0) -> c6(G(g(x0))) F(x0, x0) -> c6(G(x0)) F(x0, x0) -> c10(G(g(x0)), G(x0)) S tuples: G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(G(g(x0)), G(x0)) K tuples: F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) F(x0, x0) -> c6(G(g(x0))) F(x0, x0) -> c6(G(x0)) Defined Rule Symbols: encArg_1, f_2, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_2, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c_1, c2_3, c3_2, c9, c12_1, c1_1, c4_1, c10_3, c10_1, c5_1, c6_1, c10_2 ---------------------------------------- (101) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (102) Obligation: Complexity Dependency Tuples Problem Rules: encArg(i(z0)) -> i(encArg(z0)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) F(x0, x0) -> c6(G(g(x0))) F(x0, x0) -> c6(G(x0)) F(x0, x0) -> c7(G(g(x0))) F(x0, x0) -> c7(G(x0)) S tuples: G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c7(G(g(x0))) F(x0, x0) -> c7(G(x0)) K tuples: F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) F(x0, x0) -> c6(G(g(x0))) F(x0, x0) -> c6(G(x0)) Defined Rule Symbols: encArg_1, f_2, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_2, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c_1, c2_3, c3_2, c9, c12_1, c1_1, c4_1, c10_3, c10_1, c5_1, c6_1, c7_1 ---------------------------------------- (103) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(x0, x0) -> c7(G(g(x0))) F(x0, x0) -> c7(G(x0)) We considered the (Usable) Rules: g(z0) -> c_g(z0) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 encArg(i(z0)) -> i(encArg(z0)) g(z0) -> i(z0) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) And the Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) F(x0, x0) -> c6(G(g(x0))) F(x0, x0) -> c6(G(x0)) F(x0, x0) -> c7(G(g(x0))) F(x0, x0) -> c7(G(x0)) The order we found is given by the following interpretation: Polynomial interpretation : POL(ENCARG(x_1)) = x_1 POL(ENCODE_F(x_1, x_2)) = [1] POL(ENCODE_G(x_1)) = x_1 POL(F(x_1, x_2)) = [1] + x_1 + x_2 POL(G(x_1)) = 0 POL(a) = 0 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c10(x_1)) = x_1 POL(c10(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c12(x_1)) = x_1 POL(c2(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1)) = x_1 POL(c5(x_1)) = x_1 POL(c6(x_1)) = x_1 POL(c7(x_1)) = x_1 POL(c9) = 0 POL(c_g(x_1)) = x_1 POL(cons_f(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_g(x_1)) = [1] + x_1 POL(encArg(x_1)) = 0 POL(f(x_1, x_2)) = x_1 + x_2 POL(g(x_1)) = x_1 POL(i(x_1)) = x_1 ---------------------------------------- (104) Obligation: Complexity Dependency Tuples Problem Rules: encArg(i(z0)) -> i(encArg(z0)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) F(x0, x0) -> c6(G(g(x0))) F(x0, x0) -> c6(G(x0)) F(x0, x0) -> c7(G(g(x0))) F(x0, x0) -> c7(G(x0)) S tuples: G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) K tuples: F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) F(x0, x0) -> c6(G(g(x0))) F(x0, x0) -> c6(G(x0)) F(x0, x0) -> c7(G(g(x0))) F(x0, x0) -> c7(G(x0)) Defined Rule Symbols: encArg_1, f_2, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_2, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c_1, c2_3, c3_2, c9, c12_1, c1_1, c4_1, c10_3, c10_1, c5_1, c6_1, c7_1 ---------------------------------------- (105) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace F(x0, x0) -> c4(G(g(x0))) by F(z0, z0) -> c4(G(c_g(z0))) F(z0, z0) -> c4(G(i(z0))) ---------------------------------------- (106) Obligation: Complexity Dependency Tuples Problem Rules: encArg(i(z0)) -> i(encArg(z0)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: ENCARG(i(z0)) -> c(ENCARG(z0)) ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) F(x0, x0) -> c4(G(x0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) F(x0, x0) -> c6(G(g(x0))) F(x0, x0) -> c6(G(x0)) F(x0, x0) -> c7(G(g(x0))) F(x0, x0) -> c7(G(x0)) F(z0, z0) -> c4(G(c_g(z0))) F(z0, z0) -> c4(G(i(z0))) S tuples: G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) K tuples: F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) F(x0, x0) -> c6(G(g(x0))) F(x0, x0) -> c6(G(x0)) F(x0, x0) -> c7(G(g(x0))) F(x0, x0) -> c7(G(x0)) Defined Rule Symbols: encArg_1, f_2, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_2, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c_1, c2_3, c3_2, c9, c12_1, c1_1, c4_1, c10_3, c10_1, c5_1, c6_1, c7_1 ---------------------------------------- (107) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace ENCARG(i(z0)) -> c(ENCARG(z0)) by ENCARG(i(i(y0))) -> c(ENCARG(i(y0))) ENCARG(i(cons_f(y0, y1))) -> c(ENCARG(cons_f(y0, y1))) ENCARG(i(cons_g(y0))) -> c(ENCARG(cons_g(y0))) ---------------------------------------- (108) Obligation: Complexity Dependency Tuples Problem Rules: encArg(i(z0)) -> i(encArg(z0)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) F(x0, x0) -> c4(G(x0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) F(x0, x0) -> c6(G(g(x0))) F(x0, x0) -> c6(G(x0)) F(x0, x0) -> c7(G(g(x0))) F(x0, x0) -> c7(G(x0)) F(z0, z0) -> c4(G(c_g(z0))) F(z0, z0) -> c4(G(i(z0))) ENCARG(i(i(y0))) -> c(ENCARG(i(y0))) ENCARG(i(cons_f(y0, y1))) -> c(ENCARG(cons_f(y0, y1))) ENCARG(i(cons_g(y0))) -> c(ENCARG(cons_g(y0))) S tuples: G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) K tuples: F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) F(x0, x0) -> c6(G(g(x0))) F(x0, x0) -> c6(G(x0)) F(x0, x0) -> c7(G(g(x0))) F(x0, x0) -> c7(G(x0)) Defined Rule Symbols: encArg_1, f_2, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_2, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c2_3, c3_2, c9, c12_1, c1_1, c4_1, c10_3, c10_1, c5_1, c6_1, c7_1, c_1 ---------------------------------------- (109) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace ENCARG(i(i(y0))) -> c(ENCARG(i(y0))) by ENCARG(i(i(i(y0)))) -> c(ENCARG(i(i(y0)))) ENCARG(i(i(cons_f(y0, y1)))) -> c(ENCARG(i(cons_f(y0, y1)))) ENCARG(i(i(cons_g(y0)))) -> c(ENCARG(i(cons_g(y0)))) ---------------------------------------- (110) Obligation: Complexity Dependency Tuples Problem Rules: encArg(i(z0)) -> i(encArg(z0)) encArg(a) -> a encArg(cons_f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0, z0) -> f(i(z0), g(g(z0))) f(z0, z1) -> z0 f(z0, i(z0)) -> f(z0, z0) f(i(z0), i(c_g(z0))) -> a g(z0) -> c_g(z0) g(z0) -> i(z0) Tuples: ENCARG(cons_f(z0, z1)) -> c2(F(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) ENCODE_F(z0, z1) -> c1(F(encArg(z0), encArg(z1))) ENCODE_G(z0) -> c1(G(encArg(z0))) F(x0, x0) -> c4(G(x0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) F(x0, x0) -> c6(G(g(x0))) F(x0, x0) -> c6(G(x0)) F(x0, x0) -> c7(G(g(x0))) F(x0, x0) -> c7(G(x0)) F(z0, z0) -> c4(G(c_g(z0))) F(z0, z0) -> c4(G(i(z0))) ENCARG(i(cons_f(y0, y1))) -> c(ENCARG(cons_f(y0, y1))) ENCARG(i(cons_g(y0))) -> c(ENCARG(cons_g(y0))) ENCARG(i(i(i(y0)))) -> c(ENCARG(i(i(y0)))) ENCARG(i(i(cons_f(y0, y1)))) -> c(ENCARG(i(cons_f(y0, y1)))) ENCARG(i(i(cons_g(y0)))) -> c(ENCARG(i(cons_g(y0)))) S tuples: G(z0) -> c9 F(z0, i(z0)) -> c12(F(z0, z0)) F(z0, z0) -> c10(F(i(z0), i(i(z0))), G(g(z0)), G(z0)) K tuples: F(x0, x0) -> c4(G(g(x0))) F(x0, x0) -> c4(G(x0)) F(x0, x0) -> c10(G(g(x0))) F(z0, z0) -> c5(G(g(z0))) F(z0, z0) -> c5(G(z0)) F(x0, x0) -> c6(G(g(x0))) F(x0, x0) -> c6(G(x0)) F(x0, x0) -> c7(G(g(x0))) F(x0, x0) -> c7(G(x0)) Defined Rule Symbols: encArg_1, f_2, g_1 Defined Pair Symbols: ENCARG_1, G_1, F_2, ENCODE_F_2, ENCODE_G_1 Compound Symbols: c2_3, c3_2, c9, c12_1, c1_1, c4_1, c10_3, c10_1, c5_1, c6_1, c7_1, c_1