/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 261 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsTAProof [FINISHED, 145 ms] (8) BOUNDS(1, n^1) (9) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (10) TRS for Loop Detection (11) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(s(X)) -> f(X) g(cons(0, Y)) -> g(Y) g(cons(s(X), Y)) -> s(X) h(cons(X, Y)) -> h(g(cons(X, Y))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(0) -> 0 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_h(x_1)) -> h(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_h(x_1) -> h(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(s(X)) -> f(X) g(cons(0, Y)) -> g(Y) g(cons(s(X), Y)) -> s(X) h(cons(X, Y)) -> h(g(cons(X, Y))) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(0) -> 0 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_h(x_1)) -> h(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_h(x_1) -> h(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(s(X)) -> f(X) g(cons(0, Y)) -> g(Y) g(cons(s(X), Y)) -> s(X) h(cons(X, Y)) -> h(g(cons(X, Y))) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(0) -> 0 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_h(x_1)) -> h(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_h(x_1) -> h(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(s(X)) -> f(X) g(cons(0, Y)) -> g(Y) g(cons(s(X), Y)) -> s(X) h(cons(X, Y)) -> h(g(cons(X, Y))) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(0) -> 0 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_h(x_1)) -> h(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_h(x_1) -> h(encArg(x_1)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 3. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] transitions: s0(0) -> 0 cons0(0, 0) -> 0 00() -> 0 cons_f0(0) -> 0 cons_g0(0) -> 0 cons_h0(0) -> 0 f0(0) -> 1 g0(0) -> 2 h0(0) -> 3 encArg0(0) -> 4 encode_f0(0) -> 5 encode_s0(0) -> 6 encode_g0(0) -> 7 encode_cons0(0, 0) -> 8 encode_00() -> 9 encode_h0(0) -> 10 f1(0) -> 1 g1(0) -> 2 s1(0) -> 2 cons1(0, 0) -> 12 g1(12) -> 11 h1(11) -> 3 encArg1(0) -> 13 s1(13) -> 4 encArg1(0) -> 14 encArg1(0) -> 15 cons1(14, 15) -> 4 01() -> 4 encArg1(0) -> 16 f1(16) -> 4 encArg1(0) -> 17 g1(17) -> 4 encArg1(0) -> 18 h1(18) -> 4 f1(16) -> 5 s1(13) -> 6 g1(17) -> 7 cons1(14, 15) -> 8 01() -> 9 h1(18) -> 10 g1(0) -> 11 s1(0) -> 11 s1(13) -> 13 s1(13) -> 14 s1(13) -> 15 s1(13) -> 16 s1(13) -> 17 s1(13) -> 18 cons1(14, 15) -> 13 cons1(14, 15) -> 14 cons1(14, 15) -> 15 cons1(14, 15) -> 16 cons1(14, 15) -> 17 cons1(14, 15) -> 18 01() -> 13 01() -> 14 01() -> 15 01() -> 16 01() -> 17 01() -> 18 f1(16) -> 13 f1(16) -> 14 f1(16) -> 15 f1(16) -> 16 f1(16) -> 17 f1(16) -> 18 g1(17) -> 13 g1(17) -> 14 g1(17) -> 15 g1(17) -> 16 g1(17) -> 17 g1(17) -> 18 h1(18) -> 13 h1(18) -> 14 h1(18) -> 15 h1(18) -> 16 h1(18) -> 17 h1(18) -> 18 f2(13) -> 4 f2(13) -> 5 f2(13) -> 13 f2(13) -> 14 f2(13) -> 15 f2(13) -> 16 f2(13) -> 17 f2(13) -> 18 g2(15) -> 4 g2(15) -> 7 g2(15) -> 13 g2(15) -> 14 g2(15) -> 15 g2(15) -> 16 g2(15) -> 17 g2(15) -> 18 s2(13) -> 4 s2(13) -> 7 s2(13) -> 13 s2(13) -> 14 s2(13) -> 15 s2(13) -> 16 s2(13) -> 17 s2(13) -> 18 cons2(14, 15) -> 20 g2(20) -> 19 h2(19) -> 4 h2(19) -> 10 h2(19) -> 13 h2(19) -> 14 h2(19) -> 15 h2(19) -> 16 h2(19) -> 17 h2(19) -> 18 f3(13) -> 4 f3(13) -> 5 f3(13) -> 13 f3(13) -> 14 f3(13) -> 15 f3(13) -> 16 f3(13) -> 17 f3(13) -> 18 g2(15) -> 19 s2(13) -> 19 s3(13) -> 19 ---------------------------------------- (8) BOUNDS(1, n^1) ---------------------------------------- (9) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (10) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(s(X)) -> f(X) g(cons(0, Y)) -> g(Y) g(cons(s(X), Y)) -> s(X) h(cons(X, Y)) -> h(g(cons(X, Y))) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(0) -> 0 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_h(x_1)) -> h(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_h(x_1) -> h(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (11) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence g(cons(0, Y)) ->^+ g(Y) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [Y / cons(0, Y)]. The result substitution is [ ]. ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(s(X)) -> f(X) g(cons(0, Y)) -> g(Y) g(cons(s(X), Y)) -> s(X) h(cons(X, Y)) -> h(g(cons(X, Y))) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(0) -> 0 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_h(x_1)) -> h(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_h(x_1) -> h(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(s(X)) -> f(X) g(cons(0, Y)) -> g(Y) g(cons(s(X), Y)) -> s(X) h(cons(X, Y)) -> h(g(cons(X, Y))) The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(0) -> 0 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_h(x_1)) -> h(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_h(x_1) -> h(encArg(x_1)) Rewrite Strategy: FULL