/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 91 ms] (4) CpxRelTRS (5) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] (6) CpxRelTRS (7) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) CpxTrsToCdtProof [UPPER BOUND(ID), 1 ms] (10) CdtProblem (11) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (12) CdtProblem (13) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (16) CdtProblem (17) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CdtProblem (19) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 188 ms] (20) CdtProblem (21) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 102 ms] (22) CdtProblem (23) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 182 ms] (24) CdtProblem (25) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 127 ms] (26) CdtProblem (27) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 99 ms] (28) CdtProblem (29) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 110 ms] (30) CdtProblem (31) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (32) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(f(X)) -> c(n__f(g(n__f(X)))) c(X) -> d(activate(X)) h(X) -> c(n__d(X)) f(X) -> n__f(X) d(X) -> n__d(X) activate(n__f(X)) -> f(X) activate(n__d(X)) -> d(X) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(n__f(x_1)) -> n__f(encArg(x_1)) encArg(g(x_1)) -> g(encArg(x_1)) encArg(n__d(x_1)) -> n__d(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encArg(cons_h(x_1)) -> h(encArg(x_1)) encArg(cons_d(x_1)) -> d(encArg(x_1)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_n__f(x_1) -> n__f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_d(x_1) -> d(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_n__d(x_1) -> n__d(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(f(X)) -> c(n__f(g(n__f(X)))) c(X) -> d(activate(X)) h(X) -> c(n__d(X)) f(X) -> n__f(X) d(X) -> n__d(X) activate(n__f(X)) -> f(X) activate(n__d(X)) -> d(X) activate(X) -> X The (relative) TRS S consists of the following rules: encArg(n__f(x_1)) -> n__f(encArg(x_1)) encArg(g(x_1)) -> g(encArg(x_1)) encArg(n__d(x_1)) -> n__d(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encArg(cons_h(x_1)) -> h(encArg(x_1)) encArg(cons_d(x_1)) -> d(encArg(x_1)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_n__f(x_1) -> n__f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_d(x_1) -> d(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_n__d(x_1) -> n__d(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(f(X)) -> c(n__f(g(n__f(X)))) c(X) -> d(activate(X)) h(X) -> c(n__d(X)) f(X) -> n__f(X) d(X) -> n__d(X) activate(n__f(X)) -> f(X) activate(n__d(X)) -> d(X) activate(X) -> X The (relative) TRS S consists of the following rules: encArg(n__f(x_1)) -> n__f(encArg(x_1)) encArg(g(x_1)) -> g(encArg(x_1)) encArg(n__d(x_1)) -> n__d(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encArg(cons_h(x_1)) -> h(encArg(x_1)) encArg(cons_d(x_1)) -> d(encArg(x_1)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_n__f(x_1) -> n__f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_d(x_1) -> d(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_n__d(x_1) -> n__d(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) NonCtorToCtorProof (UPPER BOUND(ID)) transformed non-ctor to ctor-system ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: c(X) -> d(activate(X)) h(X) -> c(n__d(X)) f(X) -> n__f(X) d(X) -> n__d(X) activate(n__f(X)) -> f(X) activate(n__d(X)) -> d(X) activate(X) -> X f(c_f(X)) -> c(n__f(g(n__f(X)))) The (relative) TRS S consists of the following rules: encArg(n__f(x_1)) -> n__f(encArg(x_1)) encArg(g(x_1)) -> g(encArg(x_1)) encArg(n__d(x_1)) -> n__d(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encArg(cons_h(x_1)) -> h(encArg(x_1)) encArg(cons_d(x_1)) -> d(encArg(x_1)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_n__f(x_1) -> n__f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_d(x_1) -> d(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_n__d(x_1) -> n__d(encArg(x_1)) f(x0) -> c_f(x0) Rewrite Strategy: FULL ---------------------------------------- (7) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS is a non-duplicating overlay system, we have rc = irc. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: c(X) -> d(activate(X)) h(X) -> c(n__d(X)) f(X) -> n__f(X) d(X) -> n__d(X) activate(n__f(X)) -> f(X) activate(n__d(X)) -> d(X) activate(X) -> X f(c_f(X)) -> c(n__f(g(n__f(X)))) The (relative) TRS S consists of the following rules: encArg(n__f(x_1)) -> n__f(encArg(x_1)) encArg(g(x_1)) -> g(encArg(x_1)) encArg(n__d(x_1)) -> n__d(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encArg(cons_h(x_1)) -> h(encArg(x_1)) encArg(cons_d(x_1)) -> d(encArg(x_1)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_n__f(x_1) -> n__f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_d(x_1) -> d(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_n__d(x_1) -> n__d(encArg(x_1)) f(x0) -> c_f(x0) Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(g(z0)) -> g(encArg(z0)) encArg(n__d(z0)) -> n__d(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encArg(cons_h(z0)) -> h(encArg(z0)) encArg(cons_d(z0)) -> d(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_c(z0) -> c(encArg(z0)) encode_n__f(z0) -> n__f(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_d(z0) -> d(encArg(z0)) encode_activate(z0) -> activate(encArg(z0)) encode_h(z0) -> h(encArg(z0)) encode_n__d(z0) -> n__d(encArg(z0)) f(z0) -> c_f(z0) f(z0) -> n__f(z0) f(c_f(z0)) -> c(n__f(g(n__f(z0)))) c(z0) -> d(activate(z0)) h(z0) -> c(n__d(z0)) d(z0) -> n__d(z0) activate(n__f(z0)) -> f(z0) activate(n__d(z0)) -> d(z0) activate(z0) -> z0 Tuples: ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(n__d(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c4(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c5(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_h(z0)) -> c6(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c7(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) ENCODE_F(z0) -> c9(F(encArg(z0)), ENCARG(z0)) ENCODE_C(z0) -> c10(C(encArg(z0)), ENCARG(z0)) ENCODE_N__F(z0) -> c11(ENCARG(z0)) ENCODE_G(z0) -> c12(ENCARG(z0)) ENCODE_D(z0) -> c13(D(encArg(z0)), ENCARG(z0)) ENCODE_ACTIVATE(z0) -> c14(ACTIVATE(encArg(z0)), ENCARG(z0)) ENCODE_H(z0) -> c15(H(encArg(z0)), ENCARG(z0)) ENCODE_N__D(z0) -> c16(ENCARG(z0)) F(z0) -> c17 F(z0) -> c18 F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) H(z0) -> c21(C(n__d(z0))) D(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(z0)) ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 S tuples: F(z0) -> c18 F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) H(z0) -> c21(C(n__d(z0))) D(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(z0)) ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 K tuples:none Defined Rule Symbols: c_1, h_1, f_1, d_1, activate_1, encArg_1, encode_f_1, encode_c_1, encode_n__f_1, encode_g_1, encode_d_1, encode_activate_1, encode_h_1, encode_n__d_1 Defined Pair Symbols: ENCARG_1, ENCODE_F_1, ENCODE_C_1, ENCODE_N__F_1, ENCODE_G_1, ENCODE_D_1, ENCODE_ACTIVATE_1, ENCODE_H_1, ENCODE_N__D_1, F_1, C_1, H_1, D_1, ACTIVATE_1 Compound Symbols: c1_1, c2_1, c3_1, c4_2, c5_2, c6_2, c7_2, c8_2, c9_2, c10_2, c11_1, c12_1, c13_2, c14_2, c15_2, c16_1, c17, c18, c19_1, c20_2, c21_1, c22, c23_1, c24_1, c25 ---------------------------------------- (11) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 3 leading nodes: ENCODE_N__F(z0) -> c11(ENCARG(z0)) ENCODE_G(z0) -> c12(ENCARG(z0)) ENCODE_N__D(z0) -> c16(ENCARG(z0)) Removed 1 trailing nodes: F(z0) -> c17 ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(g(z0)) -> g(encArg(z0)) encArg(n__d(z0)) -> n__d(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encArg(cons_h(z0)) -> h(encArg(z0)) encArg(cons_d(z0)) -> d(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_c(z0) -> c(encArg(z0)) encode_n__f(z0) -> n__f(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_d(z0) -> d(encArg(z0)) encode_activate(z0) -> activate(encArg(z0)) encode_h(z0) -> h(encArg(z0)) encode_n__d(z0) -> n__d(encArg(z0)) f(z0) -> c_f(z0) f(z0) -> n__f(z0) f(c_f(z0)) -> c(n__f(g(n__f(z0)))) c(z0) -> d(activate(z0)) h(z0) -> c(n__d(z0)) d(z0) -> n__d(z0) activate(n__f(z0)) -> f(z0) activate(n__d(z0)) -> d(z0) activate(z0) -> z0 Tuples: ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(n__d(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c4(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c5(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_h(z0)) -> c6(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c7(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) ENCODE_F(z0) -> c9(F(encArg(z0)), ENCARG(z0)) ENCODE_C(z0) -> c10(C(encArg(z0)), ENCARG(z0)) ENCODE_D(z0) -> c13(D(encArg(z0)), ENCARG(z0)) ENCODE_ACTIVATE(z0) -> c14(ACTIVATE(encArg(z0)), ENCARG(z0)) ENCODE_H(z0) -> c15(H(encArg(z0)), ENCARG(z0)) F(z0) -> c18 F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) H(z0) -> c21(C(n__d(z0))) D(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(z0)) ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 S tuples: F(z0) -> c18 F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) H(z0) -> c21(C(n__d(z0))) D(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(z0)) ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 K tuples:none Defined Rule Symbols: c_1, h_1, f_1, d_1, activate_1, encArg_1, encode_f_1, encode_c_1, encode_n__f_1, encode_g_1, encode_d_1, encode_activate_1, encode_h_1, encode_n__d_1 Defined Pair Symbols: ENCARG_1, ENCODE_F_1, ENCODE_C_1, ENCODE_D_1, ENCODE_ACTIVATE_1, ENCODE_H_1, F_1, C_1, H_1, D_1, ACTIVATE_1 Compound Symbols: c1_1, c2_1, c3_1, c4_2, c5_2, c6_2, c7_2, c8_2, c9_2, c10_2, c13_2, c14_2, c15_2, c18, c19_1, c20_2, c21_1, c22, c23_1, c24_1, c25 ---------------------------------------- (13) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(g(z0)) -> g(encArg(z0)) encArg(n__d(z0)) -> n__d(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encArg(cons_h(z0)) -> h(encArg(z0)) encArg(cons_d(z0)) -> d(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_c(z0) -> c(encArg(z0)) encode_n__f(z0) -> n__f(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_d(z0) -> d(encArg(z0)) encode_activate(z0) -> activate(encArg(z0)) encode_h(z0) -> h(encArg(z0)) encode_n__d(z0) -> n__d(encArg(z0)) f(z0) -> c_f(z0) f(z0) -> n__f(z0) f(c_f(z0)) -> c(n__f(g(n__f(z0)))) c(z0) -> d(activate(z0)) h(z0) -> c(n__d(z0)) d(z0) -> n__d(z0) activate(n__f(z0)) -> f(z0) activate(n__d(z0)) -> d(z0) activate(z0) -> z0 Tuples: ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(n__d(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c4(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c5(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_h(z0)) -> c6(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c7(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) H(z0) -> c21(C(n__d(z0))) D(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(z0)) ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 ENCODE_F(z0) -> c11(F(encArg(z0))) ENCODE_F(z0) -> c11(ENCARG(z0)) ENCODE_C(z0) -> c11(C(encArg(z0))) ENCODE_C(z0) -> c11(ENCARG(z0)) ENCODE_D(z0) -> c11(D(encArg(z0))) ENCODE_D(z0) -> c11(ENCARG(z0)) ENCODE_ACTIVATE(z0) -> c11(ACTIVATE(encArg(z0))) ENCODE_ACTIVATE(z0) -> c11(ENCARG(z0)) ENCODE_H(z0) -> c11(H(encArg(z0))) ENCODE_H(z0) -> c11(ENCARG(z0)) S tuples: F(z0) -> c18 F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) H(z0) -> c21(C(n__d(z0))) D(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(z0)) ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 K tuples:none Defined Rule Symbols: c_1, h_1, f_1, d_1, activate_1, encArg_1, encode_f_1, encode_c_1, encode_n__f_1, encode_g_1, encode_d_1, encode_activate_1, encode_h_1, encode_n__d_1 Defined Pair Symbols: ENCARG_1, F_1, C_1, H_1, D_1, ACTIVATE_1, ENCODE_F_1, ENCODE_C_1, ENCODE_D_1, ENCODE_ACTIVATE_1, ENCODE_H_1 Compound Symbols: c1_1, c2_1, c3_1, c4_2, c5_2, c6_2, c7_2, c8_2, c18, c19_1, c20_2, c21_1, c22, c23_1, c24_1, c25, c11_1 ---------------------------------------- (15) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 5 leading nodes: ENCODE_F(z0) -> c11(ENCARG(z0)) ENCODE_C(z0) -> c11(ENCARG(z0)) ENCODE_D(z0) -> c11(ENCARG(z0)) ENCODE_ACTIVATE(z0) -> c11(ENCARG(z0)) ENCODE_H(z0) -> c11(ENCARG(z0)) ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(g(z0)) -> g(encArg(z0)) encArg(n__d(z0)) -> n__d(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encArg(cons_h(z0)) -> h(encArg(z0)) encArg(cons_d(z0)) -> d(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_c(z0) -> c(encArg(z0)) encode_n__f(z0) -> n__f(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_d(z0) -> d(encArg(z0)) encode_activate(z0) -> activate(encArg(z0)) encode_h(z0) -> h(encArg(z0)) encode_n__d(z0) -> n__d(encArg(z0)) f(z0) -> c_f(z0) f(z0) -> n__f(z0) f(c_f(z0)) -> c(n__f(g(n__f(z0)))) c(z0) -> d(activate(z0)) h(z0) -> c(n__d(z0)) d(z0) -> n__d(z0) activate(n__f(z0)) -> f(z0) activate(n__d(z0)) -> d(z0) activate(z0) -> z0 Tuples: ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(n__d(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c4(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c5(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_h(z0)) -> c6(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c7(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) H(z0) -> c21(C(n__d(z0))) D(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(z0)) ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 ENCODE_F(z0) -> c11(F(encArg(z0))) ENCODE_C(z0) -> c11(C(encArg(z0))) ENCODE_D(z0) -> c11(D(encArg(z0))) ENCODE_ACTIVATE(z0) -> c11(ACTIVATE(encArg(z0))) ENCODE_H(z0) -> c11(H(encArg(z0))) S tuples: F(z0) -> c18 F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) H(z0) -> c21(C(n__d(z0))) D(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(z0)) ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 K tuples:none Defined Rule Symbols: c_1, h_1, f_1, d_1, activate_1, encArg_1, encode_f_1, encode_c_1, encode_n__f_1, encode_g_1, encode_d_1, encode_activate_1, encode_h_1, encode_n__d_1 Defined Pair Symbols: ENCARG_1, F_1, C_1, H_1, D_1, ACTIVATE_1, ENCODE_F_1, ENCODE_C_1, ENCODE_D_1, ENCODE_ACTIVATE_1, ENCODE_H_1 Compound Symbols: c1_1, c2_1, c3_1, c4_2, c5_2, c6_2, c7_2, c8_2, c18, c19_1, c20_2, c21_1, c22, c23_1, c24_1, c25, c11_1 ---------------------------------------- (17) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_f(z0) -> f(encArg(z0)) encode_c(z0) -> c(encArg(z0)) encode_n__f(z0) -> n__f(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_d(z0) -> d(encArg(z0)) encode_activate(z0) -> activate(encArg(z0)) encode_h(z0) -> h(encArg(z0)) encode_n__d(z0) -> n__d(encArg(z0)) ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(g(z0)) -> g(encArg(z0)) encArg(n__d(z0)) -> n__d(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encArg(cons_h(z0)) -> h(encArg(z0)) encArg(cons_d(z0)) -> d(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) f(z0) -> c_f(z0) f(z0) -> n__f(z0) f(c_f(z0)) -> c(n__f(g(n__f(z0)))) c(z0) -> d(activate(z0)) h(z0) -> c(n__d(z0)) d(z0) -> n__d(z0) activate(n__f(z0)) -> f(z0) activate(n__d(z0)) -> d(z0) activate(z0) -> z0 Tuples: ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(n__d(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c4(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c5(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_h(z0)) -> c6(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c7(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) H(z0) -> c21(C(n__d(z0))) D(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(z0)) ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 ENCODE_F(z0) -> c11(F(encArg(z0))) ENCODE_C(z0) -> c11(C(encArg(z0))) ENCODE_D(z0) -> c11(D(encArg(z0))) ENCODE_ACTIVATE(z0) -> c11(ACTIVATE(encArg(z0))) ENCODE_H(z0) -> c11(H(encArg(z0))) S tuples: F(z0) -> c18 F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) H(z0) -> c21(C(n__d(z0))) D(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(z0)) ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 K tuples:none Defined Rule Symbols: encArg_1, f_1, c_1, h_1, d_1, activate_1 Defined Pair Symbols: ENCARG_1, F_1, C_1, H_1, D_1, ACTIVATE_1, ENCODE_F_1, ENCODE_C_1, ENCODE_D_1, ENCODE_ACTIVATE_1, ENCODE_H_1 Compound Symbols: c1_1, c2_1, c3_1, c4_2, c5_2, c6_2, c7_2, c8_2, c18, c19_1, c20_2, c21_1, c22, c23_1, c24_1, c25, c11_1 ---------------------------------------- (19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. H(z0) -> c21(C(n__d(z0))) We considered the (Usable) Rules:none And the Tuples: ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(n__d(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c4(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c5(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_h(z0)) -> c6(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c7(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) H(z0) -> c21(C(n__d(z0))) D(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(z0)) ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 ENCODE_F(z0) -> c11(F(encArg(z0))) ENCODE_C(z0) -> c11(C(encArg(z0))) ENCODE_D(z0) -> c11(D(encArg(z0))) ENCODE_ACTIVATE(z0) -> c11(ACTIVATE(encArg(z0))) ENCODE_H(z0) -> c11(H(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(ACTIVATE(x_1)) = 0 POL(C(x_1)) = 0 POL(D(x_1)) = 0 POL(ENCARG(x_1)) = x_1 POL(ENCODE_ACTIVATE(x_1)) = x_1 POL(ENCODE_C(x_1)) = x_1 POL(ENCODE_D(x_1)) = 0 POL(ENCODE_F(x_1)) = 0 POL(ENCODE_H(x_1)) = [1] + x_1 POL(F(x_1)) = 0 POL(H(x_1)) = [1] POL(activate(x_1)) = [1] + x_1 POL(c(x_1)) = [1] + x_1 POL(c1(x_1)) = x_1 POL(c11(x_1)) = x_1 POL(c18) = 0 POL(c19(x_1)) = x_1 POL(c2(x_1)) = x_1 POL(c20(x_1, x_2)) = x_1 + x_2 POL(c21(x_1)) = x_1 POL(c22) = 0 POL(c23(x_1)) = x_1 POL(c24(x_1)) = x_1 POL(c25) = 0 POL(c3(x_1)) = x_1 POL(c4(x_1, x_2)) = x_1 + x_2 POL(c5(x_1, x_2)) = x_1 + x_2 POL(c6(x_1, x_2)) = x_1 + x_2 POL(c7(x_1, x_2)) = x_1 + x_2 POL(c8(x_1, x_2)) = x_1 + x_2 POL(c_f(x_1)) = [1] + x_1 POL(cons_activate(x_1)) = [1] + x_1 POL(cons_c(x_1)) = [1] + x_1 POL(cons_d(x_1)) = [1] + x_1 POL(cons_f(x_1)) = [1] + x_1 POL(cons_h(x_1)) = [1] + x_1 POL(d(x_1)) = [1] + x_1 POL(encArg(x_1)) = [1] + x_1 POL(f(x_1)) = [1] + x_1 POL(g(x_1)) = [1] + x_1 POL(h(x_1)) = [1] + x_1 POL(n__d(x_1)) = [1] + x_1 POL(n__f(x_1)) = x_1 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(g(z0)) -> g(encArg(z0)) encArg(n__d(z0)) -> n__d(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encArg(cons_h(z0)) -> h(encArg(z0)) encArg(cons_d(z0)) -> d(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) f(z0) -> c_f(z0) f(z0) -> n__f(z0) f(c_f(z0)) -> c(n__f(g(n__f(z0)))) c(z0) -> d(activate(z0)) h(z0) -> c(n__d(z0)) d(z0) -> n__d(z0) activate(n__f(z0)) -> f(z0) activate(n__d(z0)) -> d(z0) activate(z0) -> z0 Tuples: ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(n__d(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c4(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c5(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_h(z0)) -> c6(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c7(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) H(z0) -> c21(C(n__d(z0))) D(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(z0)) ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 ENCODE_F(z0) -> c11(F(encArg(z0))) ENCODE_C(z0) -> c11(C(encArg(z0))) ENCODE_D(z0) -> c11(D(encArg(z0))) ENCODE_ACTIVATE(z0) -> c11(ACTIVATE(encArg(z0))) ENCODE_H(z0) -> c11(H(encArg(z0))) S tuples: F(z0) -> c18 F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) D(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(z0)) ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 K tuples: H(z0) -> c21(C(n__d(z0))) Defined Rule Symbols: encArg_1, f_1, c_1, h_1, d_1, activate_1 Defined Pair Symbols: ENCARG_1, F_1, C_1, H_1, D_1, ACTIVATE_1, ENCODE_F_1, ENCODE_C_1, ENCODE_D_1, ENCODE_ACTIVATE_1, ENCODE_H_1 Compound Symbols: c1_1, c2_1, c3_1, c4_2, c5_2, c6_2, c7_2, c8_2, c18, c19_1, c20_2, c21_1, c22, c23_1, c24_1, c25, c11_1 ---------------------------------------- (21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(z0) -> c18 ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 We considered the (Usable) Rules:none And the Tuples: ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(n__d(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c4(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c5(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_h(z0)) -> c6(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c7(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) H(z0) -> c21(C(n__d(z0))) D(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(z0)) ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 ENCODE_F(z0) -> c11(F(encArg(z0))) ENCODE_C(z0) -> c11(C(encArg(z0))) ENCODE_D(z0) -> c11(D(encArg(z0))) ENCODE_ACTIVATE(z0) -> c11(ACTIVATE(encArg(z0))) ENCODE_H(z0) -> c11(H(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(ACTIVATE(x_1)) = [1] POL(C(x_1)) = [1] POL(D(x_1)) = 0 POL(ENCARG(x_1)) = x_1 POL(ENCODE_ACTIVATE(x_1)) = [1] + x_1 POL(ENCODE_C(x_1)) = [1] POL(ENCODE_D(x_1)) = 0 POL(ENCODE_F(x_1)) = [1] POL(ENCODE_H(x_1)) = [1] + x_1 POL(F(x_1)) = [1] POL(H(x_1)) = [1] POL(activate(x_1)) = [1] + x_1 POL(c(x_1)) = [1] + x_1 POL(c1(x_1)) = x_1 POL(c11(x_1)) = x_1 POL(c18) = 0 POL(c19(x_1)) = x_1 POL(c2(x_1)) = x_1 POL(c20(x_1, x_2)) = x_1 + x_2 POL(c21(x_1)) = x_1 POL(c22) = 0 POL(c23(x_1)) = x_1 POL(c24(x_1)) = x_1 POL(c25) = 0 POL(c3(x_1)) = x_1 POL(c4(x_1, x_2)) = x_1 + x_2 POL(c5(x_1, x_2)) = x_1 + x_2 POL(c6(x_1, x_2)) = x_1 + x_2 POL(c7(x_1, x_2)) = x_1 + x_2 POL(c8(x_1, x_2)) = x_1 + x_2 POL(c_f(x_1)) = [1] + x_1 POL(cons_activate(x_1)) = [1] + x_1 POL(cons_c(x_1)) = [1] + x_1 POL(cons_d(x_1)) = [1] + x_1 POL(cons_f(x_1)) = [1] + x_1 POL(cons_h(x_1)) = [1] + x_1 POL(d(x_1)) = [1] + x_1 POL(encArg(x_1)) = [1] + x_1 POL(f(x_1)) = [1] + x_1 POL(g(x_1)) = [1] + x_1 POL(h(x_1)) = [1] + x_1 POL(n__d(x_1)) = [1] + x_1 POL(n__f(x_1)) = x_1 ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(g(z0)) -> g(encArg(z0)) encArg(n__d(z0)) -> n__d(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encArg(cons_h(z0)) -> h(encArg(z0)) encArg(cons_d(z0)) -> d(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) f(z0) -> c_f(z0) f(z0) -> n__f(z0) f(c_f(z0)) -> c(n__f(g(n__f(z0)))) c(z0) -> d(activate(z0)) h(z0) -> c(n__d(z0)) d(z0) -> n__d(z0) activate(n__f(z0)) -> f(z0) activate(n__d(z0)) -> d(z0) activate(z0) -> z0 Tuples: ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(n__d(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c4(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c5(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_h(z0)) -> c6(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c7(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) H(z0) -> c21(C(n__d(z0))) D(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(z0)) ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 ENCODE_F(z0) -> c11(F(encArg(z0))) ENCODE_C(z0) -> c11(C(encArg(z0))) ENCODE_D(z0) -> c11(D(encArg(z0))) ENCODE_ACTIVATE(z0) -> c11(ACTIVATE(encArg(z0))) ENCODE_H(z0) -> c11(H(encArg(z0))) S tuples: F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) D(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(z0)) K tuples: H(z0) -> c21(C(n__d(z0))) F(z0) -> c18 ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 Defined Rule Symbols: encArg_1, f_1, c_1, h_1, d_1, activate_1 Defined Pair Symbols: ENCARG_1, F_1, C_1, H_1, D_1, ACTIVATE_1, ENCODE_F_1, ENCODE_C_1, ENCODE_D_1, ENCODE_ACTIVATE_1, ENCODE_H_1 Compound Symbols: c1_1, c2_1, c3_1, c4_2, c5_2, c6_2, c7_2, c8_2, c18, c19_1, c20_2, c21_1, c22, c23_1, c24_1, c25, c11_1 ---------------------------------------- (23) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) We considered the (Usable) Rules: activate(n__d(z0)) -> d(z0) f(z0) -> c_f(z0) activate(n__f(z0)) -> f(z0) f(z0) -> n__f(z0) d(z0) -> n__d(z0) h(z0) -> c(n__d(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__d(z0)) -> n__d(encArg(z0)) activate(z0) -> z0 f(c_f(z0)) -> c(n__f(g(n__f(z0)))) encArg(g(z0)) -> g(encArg(z0)) c(z0) -> d(activate(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_d(z0)) -> d(encArg(z0)) encArg(cons_h(z0)) -> h(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) And the Tuples: ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(n__d(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c4(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c5(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_h(z0)) -> c6(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c7(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) H(z0) -> c21(C(n__d(z0))) D(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(z0)) ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 ENCODE_F(z0) -> c11(F(encArg(z0))) ENCODE_C(z0) -> c11(C(encArg(z0))) ENCODE_D(z0) -> c11(D(encArg(z0))) ENCODE_ACTIVATE(z0) -> c11(ACTIVATE(encArg(z0))) ENCODE_H(z0) -> c11(H(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(ACTIVATE(x_1)) = x_1 POL(C(x_1)) = x_1 POL(D(x_1)) = 0 POL(ENCARG(x_1)) = [2]x_1 + x_1^2 POL(ENCODE_ACTIVATE(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(ENCODE_C(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(ENCODE_D(x_1)) = [1] + x_1^2 POL(ENCODE_F(x_1)) = [1] + [2]x_1 + x_1^2 POL(ENCODE_H(x_1)) = [2] + [2]x_1 + x_1^2 POL(F(x_1)) = x_1 POL(H(x_1)) = x_1 POL(activate(x_1)) = [2] + x_1 POL(c(x_1)) = [2] + x_1 POL(c1(x_1)) = x_1 POL(c11(x_1)) = x_1 POL(c18) = 0 POL(c19(x_1)) = x_1 POL(c2(x_1)) = x_1 POL(c20(x_1, x_2)) = x_1 + x_2 POL(c21(x_1)) = x_1 POL(c22) = 0 POL(c23(x_1)) = x_1 POL(c24(x_1)) = x_1 POL(c25) = 0 POL(c3(x_1)) = x_1 POL(c4(x_1, x_2)) = x_1 + x_2 POL(c5(x_1, x_2)) = x_1 + x_2 POL(c6(x_1, x_2)) = x_1 + x_2 POL(c7(x_1, x_2)) = x_1 + x_2 POL(c8(x_1, x_2)) = x_1 + x_2 POL(c_f(x_1)) = [1] + x_1 POL(cons_activate(x_1)) = [2] + x_1 POL(cons_c(x_1)) = [2] + x_1 POL(cons_d(x_1)) = x_1 POL(cons_f(x_1)) = [2] + x_1 POL(cons_h(x_1)) = [1] + x_1 POL(d(x_1)) = x_1 POL(encArg(x_1)) = [2]x_1 POL(f(x_1)) = [2] + x_1 POL(g(x_1)) = x_1 POL(h(x_1)) = [2] + x_1 POL(n__d(x_1)) = x_1 POL(n__f(x_1)) = x_1 ---------------------------------------- (24) Obligation: Complexity Dependency Tuples Problem Rules: encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(g(z0)) -> g(encArg(z0)) encArg(n__d(z0)) -> n__d(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encArg(cons_h(z0)) -> h(encArg(z0)) encArg(cons_d(z0)) -> d(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) f(z0) -> c_f(z0) f(z0) -> n__f(z0) f(c_f(z0)) -> c(n__f(g(n__f(z0)))) c(z0) -> d(activate(z0)) h(z0) -> c(n__d(z0)) d(z0) -> n__d(z0) activate(n__f(z0)) -> f(z0) activate(n__d(z0)) -> d(z0) activate(z0) -> z0 Tuples: ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(n__d(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c4(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c5(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_h(z0)) -> c6(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c7(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) H(z0) -> c21(C(n__d(z0))) D(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(z0)) ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 ENCODE_F(z0) -> c11(F(encArg(z0))) ENCODE_C(z0) -> c11(C(encArg(z0))) ENCODE_D(z0) -> c11(D(encArg(z0))) ENCODE_ACTIVATE(z0) -> c11(ACTIVATE(encArg(z0))) ENCODE_H(z0) -> c11(H(encArg(z0))) S tuples: C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) D(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(z0)) K tuples: H(z0) -> c21(C(n__d(z0))) F(z0) -> c18 ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) Defined Rule Symbols: encArg_1, f_1, c_1, h_1, d_1, activate_1 Defined Pair Symbols: ENCARG_1, F_1, C_1, H_1, D_1, ACTIVATE_1, ENCODE_F_1, ENCODE_C_1, ENCODE_D_1, ENCODE_ACTIVATE_1, ENCODE_H_1 Compound Symbols: c1_1, c2_1, c3_1, c4_2, c5_2, c6_2, c7_2, c8_2, c18, c19_1, c20_2, c21_1, c22, c23_1, c24_1, c25, c11_1 ---------------------------------------- (25) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. ACTIVATE(n__f(z0)) -> c23(F(z0)) We considered the (Usable) Rules: activate(n__d(z0)) -> d(z0) f(z0) -> c_f(z0) activate(n__f(z0)) -> f(z0) f(z0) -> n__f(z0) d(z0) -> n__d(z0) h(z0) -> c(n__d(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__d(z0)) -> n__d(encArg(z0)) activate(z0) -> z0 f(c_f(z0)) -> c(n__f(g(n__f(z0)))) encArg(g(z0)) -> g(encArg(z0)) c(z0) -> d(activate(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_d(z0)) -> d(encArg(z0)) encArg(cons_h(z0)) -> h(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) And the Tuples: ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(n__d(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c4(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c5(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_h(z0)) -> c6(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c7(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) H(z0) -> c21(C(n__d(z0))) D(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(z0)) ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 ENCODE_F(z0) -> c11(F(encArg(z0))) ENCODE_C(z0) -> c11(C(encArg(z0))) ENCODE_D(z0) -> c11(D(encArg(z0))) ENCODE_ACTIVATE(z0) -> c11(ACTIVATE(encArg(z0))) ENCODE_H(z0) -> c11(H(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(ACTIVATE(x_1)) = x_1 POL(C(x_1)) = x_1 POL(D(x_1)) = 0 POL(ENCARG(x_1)) = [2]x_1 + x_1^2 POL(ENCODE_ACTIVATE(x_1)) = [2] + [2]x_1 + x_1^2 POL(ENCODE_C(x_1)) = [1] + x_1 + [2]x_1^2 POL(ENCODE_D(x_1)) = [1] + [2]x_1^2 POL(ENCODE_F(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(ENCODE_H(x_1)) = [2] + x_1 + [2]x_1^2 POL(F(x_1)) = x_1 POL(H(x_1)) = x_1 POL(activate(x_1)) = [2] + x_1 POL(c(x_1)) = [2] + x_1 POL(c1(x_1)) = x_1 POL(c11(x_1)) = x_1 POL(c18) = 0 POL(c19(x_1)) = x_1 POL(c2(x_1)) = x_1 POL(c20(x_1, x_2)) = x_1 + x_2 POL(c21(x_1)) = x_1 POL(c22) = 0 POL(c23(x_1)) = x_1 POL(c24(x_1)) = x_1 POL(c25) = 0 POL(c3(x_1)) = x_1 POL(c4(x_1, x_2)) = x_1 + x_2 POL(c5(x_1, x_2)) = x_1 + x_2 POL(c6(x_1, x_2)) = x_1 + x_2 POL(c7(x_1, x_2)) = x_1 + x_2 POL(c8(x_1, x_2)) = x_1 + x_2 POL(c_f(x_1)) = [2] + x_1 POL(cons_activate(x_1)) = [2] + x_1 POL(cons_c(x_1)) = [2] + x_1 POL(cons_d(x_1)) = x_1 POL(cons_f(x_1)) = [2] + x_1 POL(cons_h(x_1)) = [2] + x_1 POL(d(x_1)) = x_1 POL(encArg(x_1)) = x_1 POL(f(x_1)) = [2] + x_1 POL(g(x_1)) = x_1 POL(h(x_1)) = [2] + x_1 POL(n__d(x_1)) = x_1 POL(n__f(x_1)) = [1] + x_1 ---------------------------------------- (26) Obligation: Complexity Dependency Tuples Problem Rules: encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(g(z0)) -> g(encArg(z0)) encArg(n__d(z0)) -> n__d(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encArg(cons_h(z0)) -> h(encArg(z0)) encArg(cons_d(z0)) -> d(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) f(z0) -> c_f(z0) f(z0) -> n__f(z0) f(c_f(z0)) -> c(n__f(g(n__f(z0)))) c(z0) -> d(activate(z0)) h(z0) -> c(n__d(z0)) d(z0) -> n__d(z0) activate(n__f(z0)) -> f(z0) activate(n__d(z0)) -> d(z0) activate(z0) -> z0 Tuples: ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(n__d(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c4(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c5(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_h(z0)) -> c6(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c7(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) H(z0) -> c21(C(n__d(z0))) D(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(z0)) ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 ENCODE_F(z0) -> c11(F(encArg(z0))) ENCODE_C(z0) -> c11(C(encArg(z0))) ENCODE_D(z0) -> c11(D(encArg(z0))) ENCODE_ACTIVATE(z0) -> c11(ACTIVATE(encArg(z0))) ENCODE_H(z0) -> c11(H(encArg(z0))) S tuples: C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) D(z0) -> c22 K tuples: H(z0) -> c21(C(n__d(z0))) F(z0) -> c18 ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) ACTIVATE(n__f(z0)) -> c23(F(z0)) Defined Rule Symbols: encArg_1, f_1, c_1, h_1, d_1, activate_1 Defined Pair Symbols: ENCARG_1, F_1, C_1, H_1, D_1, ACTIVATE_1, ENCODE_F_1, ENCODE_C_1, ENCODE_D_1, ENCODE_ACTIVATE_1, ENCODE_H_1 Compound Symbols: c1_1, c2_1, c3_1, c4_2, c5_2, c6_2, c7_2, c8_2, c18, c19_1, c20_2, c21_1, c22, c23_1, c24_1, c25, c11_1 ---------------------------------------- (27) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) We considered the (Usable) Rules: activate(n__d(z0)) -> d(z0) f(z0) -> c_f(z0) activate(n__f(z0)) -> f(z0) f(z0) -> n__f(z0) d(z0) -> n__d(z0) h(z0) -> c(n__d(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__d(z0)) -> n__d(encArg(z0)) activate(z0) -> z0 f(c_f(z0)) -> c(n__f(g(n__f(z0)))) encArg(g(z0)) -> g(encArg(z0)) c(z0) -> d(activate(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_d(z0)) -> d(encArg(z0)) encArg(cons_h(z0)) -> h(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) And the Tuples: ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(n__d(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c4(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c5(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_h(z0)) -> c6(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c7(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) H(z0) -> c21(C(n__d(z0))) D(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(z0)) ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 ENCODE_F(z0) -> c11(F(encArg(z0))) ENCODE_C(z0) -> c11(C(encArg(z0))) ENCODE_D(z0) -> c11(D(encArg(z0))) ENCODE_ACTIVATE(z0) -> c11(ACTIVATE(encArg(z0))) ENCODE_H(z0) -> c11(H(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(ACTIVATE(x_1)) = x_1 POL(C(x_1)) = [1] + x_1 POL(D(x_1)) = 0 POL(ENCARG(x_1)) = x_1^2 POL(ENCODE_ACTIVATE(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(ENCODE_C(x_1)) = [2] + [2]x_1 + x_1^2 POL(ENCODE_D(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(ENCODE_F(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(ENCODE_H(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(F(x_1)) = x_1 POL(H(x_1)) = [1] + x_1 POL(activate(x_1)) = [1] + x_1 POL(c(x_1)) = [1] + x_1 POL(c1(x_1)) = x_1 POL(c11(x_1)) = x_1 POL(c18) = 0 POL(c19(x_1)) = x_1 POL(c2(x_1)) = x_1 POL(c20(x_1, x_2)) = x_1 + x_2 POL(c21(x_1)) = x_1 POL(c22) = 0 POL(c23(x_1)) = x_1 POL(c24(x_1)) = x_1 POL(c25) = 0 POL(c3(x_1)) = x_1 POL(c4(x_1, x_2)) = x_1 + x_2 POL(c5(x_1, x_2)) = x_1 + x_2 POL(c6(x_1, x_2)) = x_1 + x_2 POL(c7(x_1, x_2)) = x_1 + x_2 POL(c8(x_1, x_2)) = x_1 + x_2 POL(c_f(x_1)) = [1] + x_1 POL(cons_activate(x_1)) = [2] + x_1 POL(cons_c(x_1)) = [1] + x_1 POL(cons_d(x_1)) = x_1 POL(cons_f(x_1)) = [1] + x_1 POL(cons_h(x_1)) = [1] + x_1 POL(d(x_1)) = x_1 POL(encArg(x_1)) = [2]x_1 POL(f(x_1)) = [1] + x_1 POL(g(x_1)) = x_1 POL(h(x_1)) = [1] + x_1 POL(n__d(x_1)) = x_1 POL(n__f(x_1)) = x_1 ---------------------------------------- (28) Obligation: Complexity Dependency Tuples Problem Rules: encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(g(z0)) -> g(encArg(z0)) encArg(n__d(z0)) -> n__d(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encArg(cons_h(z0)) -> h(encArg(z0)) encArg(cons_d(z0)) -> d(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) f(z0) -> c_f(z0) f(z0) -> n__f(z0) f(c_f(z0)) -> c(n__f(g(n__f(z0)))) c(z0) -> d(activate(z0)) h(z0) -> c(n__d(z0)) d(z0) -> n__d(z0) activate(n__f(z0)) -> f(z0) activate(n__d(z0)) -> d(z0) activate(z0) -> z0 Tuples: ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(n__d(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c4(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c5(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_h(z0)) -> c6(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c7(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) H(z0) -> c21(C(n__d(z0))) D(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(z0)) ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 ENCODE_F(z0) -> c11(F(encArg(z0))) ENCODE_C(z0) -> c11(C(encArg(z0))) ENCODE_D(z0) -> c11(D(encArg(z0))) ENCODE_ACTIVATE(z0) -> c11(ACTIVATE(encArg(z0))) ENCODE_H(z0) -> c11(H(encArg(z0))) S tuples: D(z0) -> c22 K tuples: H(z0) -> c21(C(n__d(z0))) F(z0) -> c18 ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) ACTIVATE(n__f(z0)) -> c23(F(z0)) C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) Defined Rule Symbols: encArg_1, f_1, c_1, h_1, d_1, activate_1 Defined Pair Symbols: ENCARG_1, F_1, C_1, H_1, D_1, ACTIVATE_1, ENCODE_F_1, ENCODE_C_1, ENCODE_D_1, ENCODE_ACTIVATE_1, ENCODE_H_1 Compound Symbols: c1_1, c2_1, c3_1, c4_2, c5_2, c6_2, c7_2, c8_2, c18, c19_1, c20_2, c21_1, c22, c23_1, c24_1, c25, c11_1 ---------------------------------------- (29) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. D(z0) -> c22 We considered the (Usable) Rules: activate(n__d(z0)) -> d(z0) f(z0) -> c_f(z0) activate(n__f(z0)) -> f(z0) f(z0) -> n__f(z0) d(z0) -> n__d(z0) h(z0) -> c(n__d(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__d(z0)) -> n__d(encArg(z0)) activate(z0) -> z0 f(c_f(z0)) -> c(n__f(g(n__f(z0)))) encArg(g(z0)) -> g(encArg(z0)) c(z0) -> d(activate(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_d(z0)) -> d(encArg(z0)) encArg(cons_h(z0)) -> h(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) And the Tuples: ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(n__d(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c4(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c5(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_h(z0)) -> c6(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c7(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) H(z0) -> c21(C(n__d(z0))) D(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(z0)) ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 ENCODE_F(z0) -> c11(F(encArg(z0))) ENCODE_C(z0) -> c11(C(encArg(z0))) ENCODE_D(z0) -> c11(D(encArg(z0))) ENCODE_ACTIVATE(z0) -> c11(ACTIVATE(encArg(z0))) ENCODE_H(z0) -> c11(H(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(ACTIVATE(x_1)) = [1] + [2]x_1 POL(C(x_1)) = [2] + [2]x_1 POL(D(x_1)) = [1] POL(ENCARG(x_1)) = x_1^2 POL(ENCODE_ACTIVATE(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(ENCODE_C(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(ENCODE_D(x_1)) = [2] + [2]x_1 + x_1^2 POL(ENCODE_F(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(ENCODE_H(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(F(x_1)) = [1] + [2]x_1 POL(H(x_1)) = [2] + [2]x_1 POL(activate(x_1)) = [1] + x_1 POL(c(x_1)) = [2] + x_1 POL(c1(x_1)) = x_1 POL(c11(x_1)) = x_1 POL(c18) = 0 POL(c19(x_1)) = x_1 POL(c2(x_1)) = x_1 POL(c20(x_1, x_2)) = x_1 + x_2 POL(c21(x_1)) = x_1 POL(c22) = 0 POL(c23(x_1)) = x_1 POL(c24(x_1)) = x_1 POL(c25) = 0 POL(c3(x_1)) = x_1 POL(c4(x_1, x_2)) = x_1 + x_2 POL(c5(x_1, x_2)) = x_1 + x_2 POL(c6(x_1, x_2)) = x_1 + x_2 POL(c7(x_1, x_2)) = x_1 + x_2 POL(c8(x_1, x_2)) = x_1 + x_2 POL(c_f(x_1)) = [1] + x_1 POL(cons_activate(x_1)) = [1] + x_1 POL(cons_c(x_1)) = [2] + x_1 POL(cons_d(x_1)) = [1] + x_1 POL(cons_f(x_1)) = [1] + x_1 POL(cons_h(x_1)) = [2] + x_1 POL(d(x_1)) = x_1 POL(encArg(x_1)) = x_1 POL(f(x_1)) = [1] + x_1 POL(g(x_1)) = x_1 POL(h(x_1)) = [2] + x_1 POL(n__d(x_1)) = x_1 POL(n__f(x_1)) = x_1 ---------------------------------------- (30) Obligation: Complexity Dependency Tuples Problem Rules: encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(g(z0)) -> g(encArg(z0)) encArg(n__d(z0)) -> n__d(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encArg(cons_h(z0)) -> h(encArg(z0)) encArg(cons_d(z0)) -> d(encArg(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) f(z0) -> c_f(z0) f(z0) -> n__f(z0) f(c_f(z0)) -> c(n__f(g(n__f(z0)))) c(z0) -> d(activate(z0)) h(z0) -> c(n__d(z0)) d(z0) -> n__d(z0) activate(n__f(z0)) -> f(z0) activate(n__d(z0)) -> d(z0) activate(z0) -> z0 Tuples: ENCARG(n__f(z0)) -> c1(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(n__d(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c4(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c5(C(encArg(z0)), ENCARG(z0)) ENCARG(cons_h(z0)) -> c6(H(encArg(z0)), ENCARG(z0)) ENCARG(cons_d(z0)) -> c7(D(encArg(z0)), ENCARG(z0)) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) F(z0) -> c18 F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) H(z0) -> c21(C(n__d(z0))) D(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(z0)) ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 ENCODE_F(z0) -> c11(F(encArg(z0))) ENCODE_C(z0) -> c11(C(encArg(z0))) ENCODE_D(z0) -> c11(D(encArg(z0))) ENCODE_ACTIVATE(z0) -> c11(ACTIVATE(encArg(z0))) ENCODE_H(z0) -> c11(H(encArg(z0))) S tuples:none K tuples: H(z0) -> c21(C(n__d(z0))) F(z0) -> c18 ACTIVATE(n__d(z0)) -> c24(D(z0)) ACTIVATE(z0) -> c25 F(c_f(z0)) -> c19(C(n__f(g(n__f(z0))))) ACTIVATE(n__f(z0)) -> c23(F(z0)) C(z0) -> c20(D(activate(z0)), ACTIVATE(z0)) D(z0) -> c22 Defined Rule Symbols: encArg_1, f_1, c_1, h_1, d_1, activate_1 Defined Pair Symbols: ENCARG_1, F_1, C_1, H_1, D_1, ACTIVATE_1, ENCODE_F_1, ENCODE_C_1, ENCODE_D_1, ENCODE_ACTIVATE_1, ENCODE_H_1 Compound Symbols: c1_1, c2_1, c3_1, c4_2, c5_2, c6_2, c7_2, c8_2, c18, c19_1, c20_2, c21_1, c22, c23_1, c24_1, c25, c11_1 ---------------------------------------- (31) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (32) BOUNDS(1, 1)