/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(INF, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 218 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) InfiniteLowerBoundProof [FINISHED, 0 ms] (8) BOUNDS(INF, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: eq -> true eq -> eq eq -> false inf(X) -> cons take(0, X) -> nil take(s, cons) -> cons length(nil) -> 0 length(cons) -> s S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(true) -> true encArg(false) -> false encArg(cons) -> cons encArg(0) -> 0 encArg(nil) -> nil encArg(s) -> s encArg(cons_eq) -> eq encArg(cons_inf(x_1)) -> inf(encArg(x_1)) encArg(cons_take(x_1, x_2)) -> take(encArg(x_1), encArg(x_2)) encArg(cons_length(x_1)) -> length(encArg(x_1)) encode_eq -> eq encode_true -> true encode_false -> false encode_inf(x_1) -> inf(encArg(x_1)) encode_cons -> cons encode_take(x_1, x_2) -> take(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_nil -> nil encode_s -> s encode_length(x_1) -> length(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: eq -> true eq -> eq eq -> false inf(X) -> cons take(0, X) -> nil take(s, cons) -> cons length(nil) -> 0 length(cons) -> s The (relative) TRS S consists of the following rules: encArg(true) -> true encArg(false) -> false encArg(cons) -> cons encArg(0) -> 0 encArg(nil) -> nil encArg(s) -> s encArg(cons_eq) -> eq encArg(cons_inf(x_1)) -> inf(encArg(x_1)) encArg(cons_take(x_1, x_2)) -> take(encArg(x_1), encArg(x_2)) encArg(cons_length(x_1)) -> length(encArg(x_1)) encode_eq -> eq encode_true -> true encode_false -> false encode_inf(x_1) -> inf(encArg(x_1)) encode_cons -> cons encode_take(x_1, x_2) -> take(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_nil -> nil encode_s -> s encode_length(x_1) -> length(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: eq -> true eq -> eq eq -> false inf(X) -> cons take(0, X) -> nil take(s, cons) -> cons length(nil) -> 0 length(cons) -> s The (relative) TRS S consists of the following rules: encArg(true) -> true encArg(false) -> false encArg(cons) -> cons encArg(0) -> 0 encArg(nil) -> nil encArg(s) -> s encArg(cons_eq) -> eq encArg(cons_inf(x_1)) -> inf(encArg(x_1)) encArg(cons_take(x_1, x_2)) -> take(encArg(x_1), encArg(x_2)) encArg(cons_length(x_1)) -> length(encArg(x_1)) encode_eq -> eq encode_true -> true encode_false -> false encode_inf(x_1) -> inf(encArg(x_1)) encode_cons -> cons encode_take(x_1, x_2) -> take(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_nil -> nil encode_s -> s encode_length(x_1) -> length(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: eq -> true eq -> eq eq -> false inf(X) -> cons take(0, X) -> nil take(s, cons) -> cons length(nil) -> 0 length(cons) -> s The (relative) TRS S consists of the following rules: encArg(true) -> true encArg(false) -> false encArg(cons) -> cons encArg(0) -> 0 encArg(nil) -> nil encArg(s) -> s encArg(cons_eq) -> eq encArg(cons_inf(x_1)) -> inf(encArg(x_1)) encArg(cons_take(x_1, x_2)) -> take(encArg(x_1), encArg(x_2)) encArg(cons_length(x_1)) -> length(encArg(x_1)) encode_eq -> eq encode_true -> true encode_false -> false encode_inf(x_1) -> inf(encArg(x_1)) encode_cons -> cons encode_take(x_1, x_2) -> take(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_nil -> nil encode_s -> s encode_length(x_1) -> length(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (7) InfiniteLowerBoundProof (FINISHED) The following loop proves infinite runtime complexity: The rewrite sequence eq ->^+ eq gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [ ]. The result substitution is [ ]. ---------------------------------------- (8) BOUNDS(INF, INF)