/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 149 ms] (4) CpxRelTRS (5) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] (6) CpxRelTRS (7) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) CpxTrsToCdtProof [UPPER BOUND(ID), 18 ms] (10) CdtProblem (11) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (12) CdtProblem (13) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (16) CdtProblem (17) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CdtProblem (19) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 122 ms] (20) CdtProblem (21) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 57 ms] (22) CdtProblem (23) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 108 ms] (24) CdtProblem (25) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 87 ms] (26) CdtProblem (27) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 63 ms] (28) CdtProblem (29) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 74 ms] (30) CdtProblem (31) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (32) BOUNDS(1, 1) (33) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (34) TRS for Loop Detection (35) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (36) BEST (37) proven lower bound (38) LowerBoundPropagationProof [FINISHED, 0 ms] (39) BOUNDS(n^1, INF) (40) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(f(a)) -> c(n__f(n__g(n__f(n__a)))) f(X) -> n__f(X) g(X) -> n__g(X) a -> n__a activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(activate(X)) activate(n__a) -> a activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(c(x_1)) -> c(encArg(x_1)) encArg(n__f(x_1)) -> n__f(encArg(x_1)) encArg(n__g(x_1)) -> n__g(encArg(x_1)) encArg(n__a) -> n__a encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_a) -> a encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_c(x_1) -> c(encArg(x_1)) encode_n__f(x_1) -> n__f(encArg(x_1)) encode_n__g(x_1) -> n__g(encArg(x_1)) encode_n__a -> n__a encode_g(x_1) -> g(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(f(a)) -> c(n__f(n__g(n__f(n__a)))) f(X) -> n__f(X) g(X) -> n__g(X) a -> n__a activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(activate(X)) activate(n__a) -> a activate(X) -> X The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(n__f(x_1)) -> n__f(encArg(x_1)) encArg(n__g(x_1)) -> n__g(encArg(x_1)) encArg(n__a) -> n__a encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_a) -> a encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_c(x_1) -> c(encArg(x_1)) encode_n__f(x_1) -> n__f(encArg(x_1)) encode_n__g(x_1) -> n__g(encArg(x_1)) encode_n__a -> n__a encode_g(x_1) -> g(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(f(a)) -> c(n__f(n__g(n__f(n__a)))) f(X) -> n__f(X) g(X) -> n__g(X) a -> n__a activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(activate(X)) activate(n__a) -> a activate(X) -> X The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(n__f(x_1)) -> n__f(encArg(x_1)) encArg(n__g(x_1)) -> n__g(encArg(x_1)) encArg(n__a) -> n__a encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_a) -> a encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_c(x_1) -> c(encArg(x_1)) encode_n__f(x_1) -> n__f(encArg(x_1)) encode_n__g(x_1) -> n__g(encArg(x_1)) encode_n__a -> n__a encode_g(x_1) -> g(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) NonCtorToCtorProof (UPPER BOUND(ID)) transformed non-ctor to ctor-system ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(X) -> n__f(X) g(X) -> n__g(X) a -> n__a activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(activate(X)) activate(n__a) -> a activate(X) -> X f(c_f(c_a)) -> c(n__f(n__g(n__f(n__a)))) The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(n__f(x_1)) -> n__f(encArg(x_1)) encArg(n__g(x_1)) -> n__g(encArg(x_1)) encArg(n__a) -> n__a encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_a) -> a encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_c(x_1) -> c(encArg(x_1)) encode_n__f(x_1) -> n__f(encArg(x_1)) encode_n__g(x_1) -> n__g(encArg(x_1)) encode_n__a -> n__a encode_g(x_1) -> g(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) a -> c_a f(x0) -> c_f(x0) Rewrite Strategy: FULL ---------------------------------------- (7) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS is a non-duplicating overlay system, we have rc = irc. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(X) -> n__f(X) g(X) -> n__g(X) a -> n__a activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(activate(X)) activate(n__a) -> a activate(X) -> X f(c_f(c_a)) -> c(n__f(n__g(n__f(n__a)))) The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(n__f(x_1)) -> n__f(encArg(x_1)) encArg(n__g(x_1)) -> n__g(encArg(x_1)) encArg(n__a) -> n__a encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_a) -> a encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_c(x_1) -> c(encArg(x_1)) encode_n__f(x_1) -> n__f(encArg(x_1)) encode_n__g(x_1) -> n__g(encArg(x_1)) encode_n__a -> n__a encode_g(x_1) -> g(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) a -> c_a f(x0) -> c_f(x0) Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_c(z0) -> c(encArg(z0)) encode_n__f(z0) -> n__f(encArg(z0)) encode_n__g(z0) -> n__g(encArg(z0)) encode_n__a -> n__a encode_g(z0) -> g(encArg(z0)) encode_activate(z0) -> activate(encArg(z0)) a -> c_a a -> n__a f(z0) -> c_f(z0) f(z0) -> n__f(z0) f(c_f(c_a)) -> c(n__f(n__g(n__f(n__a)))) g(z0) -> n__g(z0) activate(n__f(z0)) -> f(activate(z0)) activate(n__g(z0)) -> g(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(n__a) -> c4 ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) ENCODE_F(z0) -> c9(F(encArg(z0)), ENCARG(z0)) ENCODE_A -> c10(A) ENCODE_C(z0) -> c11(ENCARG(z0)) ENCODE_N__F(z0) -> c12(ENCARG(z0)) ENCODE_N__G(z0) -> c13(ENCARG(z0)) ENCODE_N__A -> c14 ENCODE_G(z0) -> c15(G(encArg(z0)), ENCARG(z0)) ENCODE_ACTIVATE(z0) -> c16(ACTIVATE(encArg(z0)), ENCARG(z0)) A -> c17 A -> c18 F(z0) -> c19 F(z0) -> c20 F(c_f(c_a)) -> c21 G(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 S tuples: A -> c18 F(z0) -> c20 F(c_f(c_a)) -> c21 G(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 K tuples:none Defined Rule Symbols: f_1, g_1, a, activate_1, encArg_1, encode_f_1, encode_a, encode_c_1, encode_n__f_1, encode_n__g_1, encode_n__a, encode_g_1, encode_activate_1 Defined Pair Symbols: ENCARG_1, ENCODE_F_1, ENCODE_A, ENCODE_C_1, ENCODE_N__F_1, ENCODE_N__G_1, ENCODE_N__A, ENCODE_G_1, ENCODE_ACTIVATE_1, A, F_1, G_1, ACTIVATE_1 Compound Symbols: c1_1, c2_1, c3_1, c4, c5_2, c6_2, c7_1, c8_2, c9_2, c10_1, c11_1, c12_1, c13_1, c14, c15_2, c16_2, c17, c18, c19, c20, c21, c22, c23_2, c24_2, c25_1, c26 ---------------------------------------- (11) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 4 leading nodes: ENCODE_C(z0) -> c11(ENCARG(z0)) ENCODE_N__F(z0) -> c12(ENCARG(z0)) ENCODE_N__G(z0) -> c13(ENCARG(z0)) ENCODE_A -> c10(A) Removed 4 trailing nodes: A -> c17 F(z0) -> c19 ENCODE_N__A -> c14 ENCARG(n__a) -> c4 ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_c(z0) -> c(encArg(z0)) encode_n__f(z0) -> n__f(encArg(z0)) encode_n__g(z0) -> n__g(encArg(z0)) encode_n__a -> n__a encode_g(z0) -> g(encArg(z0)) encode_activate(z0) -> activate(encArg(z0)) a -> c_a a -> n__a f(z0) -> c_f(z0) f(z0) -> n__f(z0) f(c_f(c_a)) -> c(n__f(n__g(n__f(n__a)))) g(z0) -> n__g(z0) activate(n__f(z0)) -> f(activate(z0)) activate(n__g(z0)) -> g(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) ENCODE_F(z0) -> c9(F(encArg(z0)), ENCARG(z0)) ENCODE_G(z0) -> c15(G(encArg(z0)), ENCARG(z0)) ENCODE_ACTIVATE(z0) -> c16(ACTIVATE(encArg(z0)), ENCARG(z0)) A -> c18 F(z0) -> c20 F(c_f(c_a)) -> c21 G(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 S tuples: A -> c18 F(z0) -> c20 F(c_f(c_a)) -> c21 G(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 K tuples:none Defined Rule Symbols: f_1, g_1, a, activate_1, encArg_1, encode_f_1, encode_a, encode_c_1, encode_n__f_1, encode_n__g_1, encode_n__a, encode_g_1, encode_activate_1 Defined Pair Symbols: ENCARG_1, ENCODE_F_1, ENCODE_G_1, ENCODE_ACTIVATE_1, A, F_1, G_1, ACTIVATE_1 Compound Symbols: c1_1, c2_1, c3_1, c5_2, c6_2, c7_1, c8_2, c9_2, c15_2, c16_2, c18, c20, c21, c22, c23_2, c24_2, c25_1, c26 ---------------------------------------- (13) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_c(z0) -> c(encArg(z0)) encode_n__f(z0) -> n__f(encArg(z0)) encode_n__g(z0) -> n__g(encArg(z0)) encode_n__a -> n__a encode_g(z0) -> g(encArg(z0)) encode_activate(z0) -> activate(encArg(z0)) a -> c_a a -> n__a f(z0) -> c_f(z0) f(z0) -> n__f(z0) f(c_f(c_a)) -> c(n__f(n__g(n__f(n__a)))) g(z0) -> n__g(z0) activate(n__f(z0)) -> f(activate(z0)) activate(n__g(z0)) -> g(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) A -> c18 F(z0) -> c20 F(c_f(c_a)) -> c21 G(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_F(z0) -> c4(ENCARG(z0)) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_G(z0) -> c4(ENCARG(z0)) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ENCARG(z0)) S tuples: A -> c18 F(z0) -> c20 F(c_f(c_a)) -> c21 G(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 K tuples:none Defined Rule Symbols: f_1, g_1, a, activate_1, encArg_1, encode_f_1, encode_a, encode_c_1, encode_n__f_1, encode_n__g_1, encode_n__a, encode_g_1, encode_activate_1 Defined Pair Symbols: ENCARG_1, A, F_1, G_1, ACTIVATE_1, ENCODE_F_1, ENCODE_G_1, ENCODE_ACTIVATE_1 Compound Symbols: c1_1, c2_1, c3_1, c5_2, c6_2, c7_1, c8_2, c18, c20, c21, c22, c23_2, c24_2, c25_1, c26, c4_1 ---------------------------------------- (15) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 3 leading nodes: ENCODE_F(z0) -> c4(ENCARG(z0)) ENCODE_G(z0) -> c4(ENCARG(z0)) ENCODE_ACTIVATE(z0) -> c4(ENCARG(z0)) ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_c(z0) -> c(encArg(z0)) encode_n__f(z0) -> n__f(encArg(z0)) encode_n__g(z0) -> n__g(encArg(z0)) encode_n__a -> n__a encode_g(z0) -> g(encArg(z0)) encode_activate(z0) -> activate(encArg(z0)) a -> c_a a -> n__a f(z0) -> c_f(z0) f(z0) -> n__f(z0) f(c_f(c_a)) -> c(n__f(n__g(n__f(n__a)))) g(z0) -> n__g(z0) activate(n__f(z0)) -> f(activate(z0)) activate(n__g(z0)) -> g(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) A -> c18 F(z0) -> c20 F(c_f(c_a)) -> c21 G(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) S tuples: A -> c18 F(z0) -> c20 F(c_f(c_a)) -> c21 G(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 K tuples:none Defined Rule Symbols: f_1, g_1, a, activate_1, encArg_1, encode_f_1, encode_a, encode_c_1, encode_n__f_1, encode_n__g_1, encode_n__a, encode_g_1, encode_activate_1 Defined Pair Symbols: ENCARG_1, A, F_1, G_1, ACTIVATE_1, ENCODE_F_1, ENCODE_G_1, ENCODE_ACTIVATE_1 Compound Symbols: c1_1, c2_1, c3_1, c5_2, c6_2, c7_1, c8_2, c18, c20, c21, c22, c23_2, c24_2, c25_1, c26, c4_1 ---------------------------------------- (17) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_c(z0) -> c(encArg(z0)) encode_n__f(z0) -> n__f(encArg(z0)) encode_n__g(z0) -> n__g(encArg(z0)) encode_n__a -> n__a encode_g(z0) -> g(encArg(z0)) encode_activate(z0) -> activate(encArg(z0)) ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) f(z0) -> c_f(z0) f(z0) -> n__f(z0) f(c_f(c_a)) -> c(n__f(n__g(n__f(n__a)))) g(z0) -> n__g(z0) a -> c_a a -> n__a activate(n__f(z0)) -> f(activate(z0)) activate(n__g(z0)) -> g(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) A -> c18 F(z0) -> c20 F(c_f(c_a)) -> c21 G(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) S tuples: A -> c18 F(z0) -> c20 F(c_f(c_a)) -> c21 G(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 K tuples:none Defined Rule Symbols: encArg_1, f_1, g_1, a, activate_1 Defined Pair Symbols: ENCARG_1, A, F_1, G_1, ACTIVATE_1, ENCODE_F_1, ENCODE_G_1, ENCODE_ACTIVATE_1 Compound Symbols: c1_1, c2_1, c3_1, c5_2, c6_2, c7_1, c8_2, c18, c20, c21, c22, c23_2, c24_2, c25_1, c26, c4_1 ---------------------------------------- (19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 We considered the (Usable) Rules:none And the Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) A -> c18 F(z0) -> c20 F(c_f(c_a)) -> c21 G(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A) = 0 POL(ACTIVATE(x_1)) = [1] POL(ENCARG(x_1)) = [1] + x_1 POL(ENCODE_ACTIVATE(x_1)) = [1] POL(ENCODE_F(x_1)) = x_1 POL(ENCODE_G(x_1)) = x_1 POL(F(x_1)) = 0 POL(G(x_1)) = 0 POL(a) = [1] POL(activate(x_1)) = 0 POL(c(x_1)) = [1] + x_1 POL(c1(x_1)) = x_1 POL(c18) = 0 POL(c2(x_1)) = x_1 POL(c20) = 0 POL(c21) = 0 POL(c22) = 0 POL(c23(x_1, x_2)) = x_1 + x_2 POL(c24(x_1, x_2)) = x_1 + x_2 POL(c25(x_1)) = x_1 POL(c26) = 0 POL(c3(x_1)) = x_1 POL(c4(x_1)) = x_1 POL(c5(x_1, x_2)) = x_1 + x_2 POL(c6(x_1, x_2)) = x_1 + x_2 POL(c7(x_1)) = x_1 POL(c8(x_1, x_2)) = x_1 + x_2 POL(c_a) = [1] POL(c_f(x_1)) = [1] + x_1 POL(cons_a) = [1] POL(cons_activate(x_1)) = [1] + x_1 POL(cons_f(x_1)) = [1] + x_1 POL(cons_g(x_1)) = [1] + x_1 POL(encArg(x_1)) = [1] + x_1 POL(f(x_1)) = [1] + x_1 POL(g(x_1)) = [1] + x_1 POL(n__a) = 0 POL(n__f(x_1)) = x_1 POL(n__g(x_1)) = x_1 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) f(z0) -> c_f(z0) f(z0) -> n__f(z0) f(c_f(c_a)) -> c(n__f(n__g(n__f(n__a)))) g(z0) -> n__g(z0) a -> c_a a -> n__a activate(n__f(z0)) -> f(activate(z0)) activate(n__g(z0)) -> g(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) A -> c18 F(z0) -> c20 F(c_f(c_a)) -> c21 G(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) S tuples: A -> c18 F(z0) -> c20 F(c_f(c_a)) -> c21 G(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) K tuples: ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 Defined Rule Symbols: encArg_1, f_1, g_1, a, activate_1 Defined Pair Symbols: ENCARG_1, A, F_1, G_1, ACTIVATE_1, ENCODE_F_1, ENCODE_G_1, ENCODE_ACTIVATE_1 Compound Symbols: c1_1, c2_1, c3_1, c5_2, c6_2, c7_1, c8_2, c18, c20, c21, c22, c23_2, c24_2, c25_1, c26, c4_1 ---------------------------------------- (21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. A -> c18 We considered the (Usable) Rules:none And the Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) A -> c18 F(z0) -> c20 F(c_f(c_a)) -> c21 G(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A) = [1] POL(ACTIVATE(x_1)) = [1] POL(ENCARG(x_1)) = [3] + x_1 POL(ENCODE_ACTIVATE(x_1)) = [1] POL(ENCODE_F(x_1)) = 0 POL(ENCODE_G(x_1)) = [1] POL(F(x_1)) = 0 POL(G(x_1)) = 0 POL(a) = [2] POL(activate(x_1)) = 0 POL(c(x_1)) = [2] + x_1 POL(c1(x_1)) = x_1 POL(c18) = 0 POL(c2(x_1)) = x_1 POL(c20) = 0 POL(c21) = 0 POL(c22) = 0 POL(c23(x_1, x_2)) = x_1 + x_2 POL(c24(x_1, x_2)) = x_1 + x_2 POL(c25(x_1)) = x_1 POL(c26) = 0 POL(c3(x_1)) = x_1 POL(c4(x_1)) = x_1 POL(c5(x_1, x_2)) = x_1 + x_2 POL(c6(x_1, x_2)) = x_1 + x_2 POL(c7(x_1)) = x_1 POL(c8(x_1, x_2)) = x_1 + x_2 POL(c_a) = [3] POL(c_f(x_1)) = 0 POL(cons_a) = 0 POL(cons_activate(x_1)) = [1] + x_1 POL(cons_f(x_1)) = x_1 POL(cons_g(x_1)) = x_1 POL(encArg(x_1)) = [2] + x_1 POL(f(x_1)) = 0 POL(g(x_1)) = 0 POL(n__a) = [2] POL(n__f(x_1)) = [2] + x_1 POL(n__g(x_1)) = [2] + x_1 ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) f(z0) -> c_f(z0) f(z0) -> n__f(z0) f(c_f(c_a)) -> c(n__f(n__g(n__f(n__a)))) g(z0) -> n__g(z0) a -> c_a a -> n__a activate(n__f(z0)) -> f(activate(z0)) activate(n__g(z0)) -> g(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) A -> c18 F(z0) -> c20 F(c_f(c_a)) -> c21 G(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) S tuples: F(z0) -> c20 F(c_f(c_a)) -> c21 G(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) K tuples: ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 A -> c18 Defined Rule Symbols: encArg_1, f_1, g_1, a, activate_1 Defined Pair Symbols: ENCARG_1, A, F_1, G_1, ACTIVATE_1, ENCODE_F_1, ENCODE_G_1, ENCODE_ACTIVATE_1 Compound Symbols: c1_1, c2_1, c3_1, c5_2, c6_2, c7_1, c8_2, c18, c20, c21, c22, c23_2, c24_2, c25_1, c26, c4_1 ---------------------------------------- (23) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) We considered the (Usable) Rules: encArg(n__a) -> n__a encArg(cons_a) -> a f(z0) -> c_f(z0) f(c_f(c_a)) -> c(n__f(n__g(n__f(n__a)))) g(z0) -> n__g(z0) activate(n__g(z0)) -> g(activate(z0)) f(z0) -> n__f(z0) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) activate(z0) -> z0 a -> c_a encArg(c(z0)) -> c(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) activate(n__a) -> a activate(n__f(z0)) -> f(activate(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) a -> n__a And the Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) A -> c18 F(z0) -> c20 F(c_f(c_a)) -> c21 G(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A) = 0 POL(ACTIVATE(x_1)) = x_1 POL(ENCARG(x_1)) = [2] + [2]x_1^2 POL(ENCODE_ACTIVATE(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(ENCODE_F(x_1)) = [2] + [2]x_1^2 POL(ENCODE_G(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(F(x_1)) = 0 POL(G(x_1)) = 0 POL(a) = 0 POL(activate(x_1)) = x_1 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c18) = 0 POL(c2(x_1)) = x_1 POL(c20) = 0 POL(c21) = 0 POL(c22) = 0 POL(c23(x_1, x_2)) = x_1 + x_2 POL(c24(x_1, x_2)) = x_1 + x_2 POL(c25(x_1)) = x_1 POL(c26) = 0 POL(c3(x_1)) = x_1 POL(c4(x_1)) = x_1 POL(c5(x_1, x_2)) = x_1 + x_2 POL(c6(x_1, x_2)) = x_1 + x_2 POL(c7(x_1)) = x_1 POL(c8(x_1, x_2)) = x_1 + x_2 POL(c_a) = 0 POL(c_f(x_1)) = [1] POL(cons_a) = 0 POL(cons_activate(x_1)) = [2] + x_1 POL(cons_f(x_1)) = [1] + x_1 POL(cons_g(x_1)) = x_1 POL(encArg(x_1)) = [2]x_1 POL(f(x_1)) = [1] + x_1 POL(g(x_1)) = x_1 POL(n__a) = 0 POL(n__f(x_1)) = [1] + x_1 POL(n__g(x_1)) = x_1 ---------------------------------------- (24) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) f(z0) -> c_f(z0) f(z0) -> n__f(z0) f(c_f(c_a)) -> c(n__f(n__g(n__f(n__a)))) g(z0) -> n__g(z0) a -> c_a a -> n__a activate(n__f(z0)) -> f(activate(z0)) activate(n__g(z0)) -> g(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) A -> c18 F(z0) -> c20 F(c_f(c_a)) -> c21 G(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) S tuples: F(z0) -> c20 F(c_f(c_a)) -> c21 G(z0) -> c22 ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) K tuples: ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 A -> c18 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) Defined Rule Symbols: encArg_1, f_1, g_1, a, activate_1 Defined Pair Symbols: ENCARG_1, A, F_1, G_1, ACTIVATE_1, ENCODE_F_1, ENCODE_G_1, ENCODE_ACTIVATE_1 Compound Symbols: c1_1, c2_1, c3_1, c5_2, c6_2, c7_1, c8_2, c18, c20, c21, c22, c23_2, c24_2, c25_1, c26, c4_1 ---------------------------------------- (25) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(z0) -> c20 F(c_f(c_a)) -> c21 We considered the (Usable) Rules: encArg(n__a) -> n__a encArg(cons_a) -> a f(z0) -> c_f(z0) f(c_f(c_a)) -> c(n__f(n__g(n__f(n__a)))) g(z0) -> n__g(z0) activate(n__g(z0)) -> g(activate(z0)) f(z0) -> n__f(z0) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) activate(z0) -> z0 a -> c_a encArg(c(z0)) -> c(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) activate(n__a) -> a activate(n__f(z0)) -> f(activate(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) a -> n__a And the Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) A -> c18 F(z0) -> c20 F(c_f(c_a)) -> c21 G(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A) = 0 POL(ACTIVATE(x_1)) = x_1 POL(ENCARG(x_1)) = [2] + x_1^2 POL(ENCODE_ACTIVATE(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(ENCODE_F(x_1)) = [2] + x_1^2 POL(ENCODE_G(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(F(x_1)) = [2] POL(G(x_1)) = 0 POL(a) = 0 POL(activate(x_1)) = x_1 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c18) = 0 POL(c2(x_1)) = x_1 POL(c20) = 0 POL(c21) = 0 POL(c22) = 0 POL(c23(x_1, x_2)) = x_1 + x_2 POL(c24(x_1, x_2)) = x_1 + x_2 POL(c25(x_1)) = x_1 POL(c26) = 0 POL(c3(x_1)) = x_1 POL(c4(x_1)) = x_1 POL(c5(x_1, x_2)) = x_1 + x_2 POL(c6(x_1, x_2)) = x_1 + x_2 POL(c7(x_1)) = x_1 POL(c8(x_1, x_2)) = x_1 + x_2 POL(c_a) = 0 POL(c_f(x_1)) = [2] POL(cons_a) = 0 POL(cons_activate(x_1)) = [2] + x_1 POL(cons_f(x_1)) = [2] + x_1 POL(cons_g(x_1)) = x_1 POL(encArg(x_1)) = x_1 POL(f(x_1)) = [2] + x_1 POL(g(x_1)) = x_1 POL(n__a) = 0 POL(n__f(x_1)) = [2] + x_1 POL(n__g(x_1)) = x_1 ---------------------------------------- (26) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) f(z0) -> c_f(z0) f(z0) -> n__f(z0) f(c_f(c_a)) -> c(n__f(n__g(n__f(n__a)))) g(z0) -> n__g(z0) a -> c_a a -> n__a activate(n__f(z0)) -> f(activate(z0)) activate(n__g(z0)) -> g(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) A -> c18 F(z0) -> c20 F(c_f(c_a)) -> c21 G(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) S tuples: G(z0) -> c22 ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) K tuples: ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 A -> c18 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) F(z0) -> c20 F(c_f(c_a)) -> c21 Defined Rule Symbols: encArg_1, f_1, g_1, a, activate_1 Defined Pair Symbols: ENCARG_1, A, F_1, G_1, ACTIVATE_1, ENCODE_F_1, ENCODE_G_1, ENCODE_ACTIVATE_1 Compound Symbols: c1_1, c2_1, c3_1, c5_2, c6_2, c7_1, c8_2, c18, c20, c21, c22, c23_2, c24_2, c25_1, c26, c4_1 ---------------------------------------- (27) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) We considered the (Usable) Rules: encArg(n__a) -> n__a encArg(cons_a) -> a f(z0) -> c_f(z0) f(c_f(c_a)) -> c(n__f(n__g(n__f(n__a)))) g(z0) -> n__g(z0) activate(n__g(z0)) -> g(activate(z0)) f(z0) -> n__f(z0) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) activate(z0) -> z0 a -> c_a encArg(c(z0)) -> c(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) activate(n__a) -> a activate(n__f(z0)) -> f(activate(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) a -> n__a And the Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) A -> c18 F(z0) -> c20 F(c_f(c_a)) -> c21 G(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A) = 0 POL(ACTIVATE(x_1)) = [2]x_1 POL(ENCARG(x_1)) = [1] + x_1^2 POL(ENCODE_ACTIVATE(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(ENCODE_F(x_1)) = [1] + [2]x_1^2 POL(ENCODE_G(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(F(x_1)) = 0 POL(G(x_1)) = 0 POL(a) = [1] POL(activate(x_1)) = [2] + x_1 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c18) = 0 POL(c2(x_1)) = x_1 POL(c20) = 0 POL(c21) = 0 POL(c22) = 0 POL(c23(x_1, x_2)) = x_1 + x_2 POL(c24(x_1, x_2)) = x_1 + x_2 POL(c25(x_1)) = x_1 POL(c26) = 0 POL(c3(x_1)) = x_1 POL(c4(x_1)) = x_1 POL(c5(x_1, x_2)) = x_1 + x_2 POL(c6(x_1, x_2)) = x_1 + x_2 POL(c7(x_1)) = x_1 POL(c8(x_1, x_2)) = x_1 + x_2 POL(c_a) = [1] POL(c_f(x_1)) = x_1 POL(cons_a) = [1] POL(cons_activate(x_1)) = [2] + x_1 POL(cons_f(x_1)) = x_1 POL(cons_g(x_1)) = [1] + x_1 POL(encArg(x_1)) = x_1 POL(f(x_1)) = x_1 POL(g(x_1)) = [1] + x_1 POL(n__a) = 0 POL(n__f(x_1)) = x_1 POL(n__g(x_1)) = [1] + x_1 ---------------------------------------- (28) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) f(z0) -> c_f(z0) f(z0) -> n__f(z0) f(c_f(c_a)) -> c(n__f(n__g(n__f(n__a)))) g(z0) -> n__g(z0) a -> c_a a -> n__a activate(n__f(z0)) -> f(activate(z0)) activate(n__g(z0)) -> g(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) A -> c18 F(z0) -> c20 F(c_f(c_a)) -> c21 G(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) S tuples: G(z0) -> c22 K tuples: ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 A -> c18 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) F(z0) -> c20 F(c_f(c_a)) -> c21 ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) Defined Rule Symbols: encArg_1, f_1, g_1, a, activate_1 Defined Pair Symbols: ENCARG_1, A, F_1, G_1, ACTIVATE_1, ENCODE_F_1, ENCODE_G_1, ENCODE_ACTIVATE_1 Compound Symbols: c1_1, c2_1, c3_1, c5_2, c6_2, c7_1, c8_2, c18, c20, c21, c22, c23_2, c24_2, c25_1, c26, c4_1 ---------------------------------------- (29) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. G(z0) -> c22 We considered the (Usable) Rules: encArg(n__a) -> n__a encArg(cons_a) -> a f(z0) -> c_f(z0) f(c_f(c_a)) -> c(n__f(n__g(n__f(n__a)))) g(z0) -> n__g(z0) activate(n__g(z0)) -> g(activate(z0)) f(z0) -> n__f(z0) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) activate(z0) -> z0 a -> c_a encArg(c(z0)) -> c(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) activate(n__a) -> a activate(n__f(z0)) -> f(activate(z0)) encArg(cons_activate(z0)) -> activate(encArg(z0)) a -> n__a And the Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) A -> c18 F(z0) -> c20 F(c_f(c_a)) -> c21 G(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A) = 0 POL(ACTIVATE(x_1)) = x_1 POL(ENCARG(x_1)) = [1] + x_1 + [2]x_1^2 POL(ENCODE_ACTIVATE(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(ENCODE_F(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(ENCODE_G(x_1)) = [2] + x_1 + [2]x_1^2 POL(F(x_1)) = 0 POL(G(x_1)) = [1] POL(a) = [1] POL(activate(x_1)) = [1] + x_1 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c18) = 0 POL(c2(x_1)) = x_1 POL(c20) = 0 POL(c21) = 0 POL(c22) = 0 POL(c23(x_1, x_2)) = x_1 + x_2 POL(c24(x_1, x_2)) = x_1 + x_2 POL(c25(x_1)) = x_1 POL(c26) = 0 POL(c3(x_1)) = x_1 POL(c4(x_1)) = x_1 POL(c5(x_1, x_2)) = x_1 + x_2 POL(c6(x_1, x_2)) = x_1 + x_2 POL(c7(x_1)) = x_1 POL(c8(x_1, x_2)) = x_1 + x_2 POL(c_a) = [1] POL(c_f(x_1)) = x_1 POL(cons_a) = [1] POL(cons_activate(x_1)) = [1] + x_1 POL(cons_f(x_1)) = x_1 POL(cons_g(x_1)) = [2] + x_1 POL(encArg(x_1)) = x_1 POL(f(x_1)) = x_1 POL(g(x_1)) = [1] + x_1 POL(n__a) = 0 POL(n__f(x_1)) = x_1 POL(n__g(x_1)) = [1] + x_1 ---------------------------------------- (30) Obligation: Complexity Dependency Tuples Problem Rules: encArg(c(z0)) -> c(encArg(z0)) encArg(n__f(z0)) -> n__f(encArg(z0)) encArg(n__g(z0)) -> n__g(encArg(z0)) encArg(n__a) -> n__a encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_a) -> a encArg(cons_activate(z0)) -> activate(encArg(z0)) f(z0) -> c_f(z0) f(z0) -> n__f(z0) f(c_f(c_a)) -> c(n__f(n__g(n__f(n__a)))) g(z0) -> n__g(z0) a -> c_a a -> n__a activate(n__f(z0)) -> f(activate(z0)) activate(n__g(z0)) -> g(activate(z0)) activate(n__a) -> a activate(z0) -> z0 Tuples: ENCARG(c(z0)) -> c1(ENCARG(z0)) ENCARG(n__f(z0)) -> c2(ENCARG(z0)) ENCARG(n__g(z0)) -> c3(ENCARG(z0)) ENCARG(cons_f(z0)) -> c5(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c6(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c7(A) ENCARG(cons_activate(z0)) -> c8(ACTIVATE(encArg(z0)), ENCARG(z0)) A -> c18 F(z0) -> c20 F(c_f(c_a)) -> c21 G(z0) -> c22 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 ENCODE_F(z0) -> c4(F(encArg(z0))) ENCODE_G(z0) -> c4(G(encArg(z0))) ENCODE_ACTIVATE(z0) -> c4(ACTIVATE(encArg(z0))) S tuples:none K tuples: ACTIVATE(n__a) -> c25(A) ACTIVATE(z0) -> c26 A -> c18 ACTIVATE(n__f(z0)) -> c23(F(activate(z0)), ACTIVATE(z0)) F(z0) -> c20 F(c_f(c_a)) -> c21 ACTIVATE(n__g(z0)) -> c24(G(activate(z0)), ACTIVATE(z0)) G(z0) -> c22 Defined Rule Symbols: encArg_1, f_1, g_1, a, activate_1 Defined Pair Symbols: ENCARG_1, A, F_1, G_1, ACTIVATE_1, ENCODE_F_1, ENCODE_G_1, ENCODE_ACTIVATE_1 Compound Symbols: c1_1, c2_1, c3_1, c5_2, c6_2, c7_1, c8_2, c18, c20, c21, c22, c23_2, c24_2, c25_1, c26, c4_1 ---------------------------------------- (31) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (32) BOUNDS(1, 1) ---------------------------------------- (33) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (34) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(f(a)) -> c(n__f(n__g(n__f(n__a)))) f(X) -> n__f(X) g(X) -> n__g(X) a -> n__a activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(activate(X)) activate(n__a) -> a activate(X) -> X The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(n__f(x_1)) -> n__f(encArg(x_1)) encArg(n__g(x_1)) -> n__g(encArg(x_1)) encArg(n__a) -> n__a encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_a) -> a encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_c(x_1) -> c(encArg(x_1)) encode_n__f(x_1) -> n__f(encArg(x_1)) encode_n__g(x_1) -> n__g(encArg(x_1)) encode_n__a -> n__a encode_g(x_1) -> g(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (35) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence activate(n__f(X)) ->^+ f(activate(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / n__f(X)]. The result substitution is [ ]. ---------------------------------------- (36) Complex Obligation (BEST) ---------------------------------------- (37) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(f(a)) -> c(n__f(n__g(n__f(n__a)))) f(X) -> n__f(X) g(X) -> n__g(X) a -> n__a activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(activate(X)) activate(n__a) -> a activate(X) -> X The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(n__f(x_1)) -> n__f(encArg(x_1)) encArg(n__g(x_1)) -> n__g(encArg(x_1)) encArg(n__a) -> n__a encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_a) -> a encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_c(x_1) -> c(encArg(x_1)) encode_n__f(x_1) -> n__f(encArg(x_1)) encode_n__g(x_1) -> n__g(encArg(x_1)) encode_n__a -> n__a encode_g(x_1) -> g(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (38) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (39) BOUNDS(n^1, INF) ---------------------------------------- (40) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(f(a)) -> c(n__f(n__g(n__f(n__a)))) f(X) -> n__f(X) g(X) -> n__g(X) a -> n__a activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(activate(X)) activate(n__a) -> a activate(X) -> X The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(n__f(x_1)) -> n__f(encArg(x_1)) encArg(n__g(x_1)) -> n__g(encArg(x_1)) encArg(n__a) -> n__a encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_a) -> a encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_c(x_1) -> c(encArg(x_1)) encode_n__f(x_1) -> n__f(encArg(x_1)) encode_n__g(x_1) -> n__g(encArg(x_1)) encode_n__a -> n__a encode_g(x_1) -> g(encArg(x_1)) encode_activate(x_1) -> activate(encArg(x_1)) Rewrite Strategy: FULL