/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 47 ms] (4) CpxRelTRS (5) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (8) CdtProblem (9) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (10) CdtProblem (11) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (14) CdtProblem (15) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 101 ms] (18) CdtProblem (19) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 72 ms] (20) CdtProblem (21) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 4 ms] (22) CdtProblem (23) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CdtProblem (25) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (26) CdtProblem (27) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 86 ms] (28) CdtProblem (29) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (30) BOUNDS(1, 1) (31) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (32) CpxRelTRS (33) TypeInferenceProof [BOTH BOUNDS(ID, ID), 11 ms] (34) typed CpxTrs (35) OrderProof [LOWER BOUND(ID), 0 ms] (36) typed CpxTrs (37) RewriteLemmaProof [LOWER BOUND(ID), 1008 ms] (38) BEST (39) proven lower bound (40) LowerBoundPropagationProof [FINISHED, 0 ms] (41) BOUNDS(n^1, INF) (42) typed CpxTrs (43) RewriteLemmaProof [LOWER BOUND(ID), 34 ms] (44) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(mark(X)) mark(a) -> a mark(g(X)) -> g(X) a__f(X) -> f(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(f(x_1)) -> f(encArg(x_1)) encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1) -> a__f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(mark(X)) mark(a) -> a mark(g(X)) -> g(X) a__f(X) -> f(X) The (relative) TRS S consists of the following rules: encArg(f(x_1)) -> f(encArg(x_1)) encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1) -> a__f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(mark(X)) mark(a) -> a mark(g(X)) -> g(X) a__f(X) -> f(X) The (relative) TRS S consists of the following rules: encArg(f(x_1)) -> f(encArg(x_1)) encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1) -> a__f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS is a non-duplicating overlay system, we have rc = irc. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(mark(X)) mark(a) -> a mark(g(X)) -> g(X) a__f(X) -> f(X) The (relative) TRS S consists of the following rules: encArg(f(x_1)) -> f(encArg(x_1)) encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1) -> a__f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(f(z0)) -> f(encArg(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) encArg(cons_a__f(z0)) -> a__f(encArg(z0)) encArg(cons_mark(z0)) -> mark(encArg(z0)) encode_a__f(z0) -> a__f(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_g(z0) -> g(encArg(z0)) encode_mark(z0) -> mark(encArg(z0)) a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) mark(f(z0)) -> a__f(mark(z0)) mark(a) -> a mark(g(z0)) -> g(z0) Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(a) -> c1 ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) ENCARG(cons_mark(z0)) -> c4(MARK(encArg(z0)), ENCARG(z0)) ENCODE_A__F(z0) -> c5(A__F(encArg(z0)), ENCARG(z0)) ENCODE_F(z0) -> c6(ENCARG(z0)) ENCODE_A -> c7 ENCODE_G(z0) -> c8(ENCARG(z0)) ENCODE_MARK(z0) -> c9(MARK(encArg(z0)), ENCARG(z0)) A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 S tuples: A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 K tuples:none Defined Rule Symbols: a__f_1, mark_1, encArg_1, encode_a__f_1, encode_f_1, encode_a, encode_g_1, encode_mark_1 Defined Pair Symbols: ENCARG_1, ENCODE_A__F_1, ENCODE_F_1, ENCODE_A, ENCODE_G_1, ENCODE_MARK_1, A__F_1, MARK_1 Compound Symbols: c_1, c1, c2_1, c3_2, c4_2, c5_2, c6_1, c7, c8_1, c9_2, c10_1, c11, c12_2, c13, c14 ---------------------------------------- (9) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_F(z0) -> c6(ENCARG(z0)) ENCODE_G(z0) -> c8(ENCARG(z0)) Removed 2 trailing nodes: ENCODE_A -> c7 ENCARG(a) -> c1 ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(f(z0)) -> f(encArg(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) encArg(cons_a__f(z0)) -> a__f(encArg(z0)) encArg(cons_mark(z0)) -> mark(encArg(z0)) encode_a__f(z0) -> a__f(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_g(z0) -> g(encArg(z0)) encode_mark(z0) -> mark(encArg(z0)) a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) mark(f(z0)) -> a__f(mark(z0)) mark(a) -> a mark(g(z0)) -> g(z0) Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) ENCARG(cons_mark(z0)) -> c4(MARK(encArg(z0)), ENCARG(z0)) ENCODE_A__F(z0) -> c5(A__F(encArg(z0)), ENCARG(z0)) ENCODE_MARK(z0) -> c9(MARK(encArg(z0)), ENCARG(z0)) A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 S tuples: A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 K tuples:none Defined Rule Symbols: a__f_1, mark_1, encArg_1, encode_a__f_1, encode_f_1, encode_a, encode_g_1, encode_mark_1 Defined Pair Symbols: ENCARG_1, ENCODE_A__F_1, ENCODE_MARK_1, A__F_1, MARK_1 Compound Symbols: c_1, c2_1, c3_2, c4_2, c5_2, c9_2, c10_1, c11, c12_2, c13, c14 ---------------------------------------- (11) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(f(z0)) -> f(encArg(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) encArg(cons_a__f(z0)) -> a__f(encArg(z0)) encArg(cons_mark(z0)) -> mark(encArg(z0)) encode_a__f(z0) -> a__f(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_g(z0) -> g(encArg(z0)) encode_mark(z0) -> mark(encArg(z0)) a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) mark(f(z0)) -> a__f(mark(z0)) mark(a) -> a mark(g(z0)) -> g(z0) Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) ENCARG(cons_mark(z0)) -> c4(MARK(encArg(z0)), ENCARG(z0)) A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 ENCODE_A__F(z0) -> c1(A__F(encArg(z0))) ENCODE_A__F(z0) -> c1(ENCARG(z0)) ENCODE_MARK(z0) -> c1(MARK(encArg(z0))) ENCODE_MARK(z0) -> c1(ENCARG(z0)) S tuples: A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 K tuples:none Defined Rule Symbols: a__f_1, mark_1, encArg_1, encode_a__f_1, encode_f_1, encode_a, encode_g_1, encode_mark_1 Defined Pair Symbols: ENCARG_1, A__F_1, MARK_1, ENCODE_A__F_1, ENCODE_MARK_1 Compound Symbols: c_1, c2_1, c3_2, c4_2, c10_1, c11, c12_2, c13, c14, c1_1 ---------------------------------------- (13) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_A__F(z0) -> c1(ENCARG(z0)) ENCODE_MARK(z0) -> c1(ENCARG(z0)) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(f(z0)) -> f(encArg(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) encArg(cons_a__f(z0)) -> a__f(encArg(z0)) encArg(cons_mark(z0)) -> mark(encArg(z0)) encode_a__f(z0) -> a__f(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_g(z0) -> g(encArg(z0)) encode_mark(z0) -> mark(encArg(z0)) a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) mark(f(z0)) -> a__f(mark(z0)) mark(a) -> a mark(g(z0)) -> g(z0) Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) ENCARG(cons_mark(z0)) -> c4(MARK(encArg(z0)), ENCARG(z0)) A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 ENCODE_A__F(z0) -> c1(A__F(encArg(z0))) ENCODE_MARK(z0) -> c1(MARK(encArg(z0))) S tuples: A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 K tuples:none Defined Rule Symbols: a__f_1, mark_1, encArg_1, encode_a__f_1, encode_f_1, encode_a, encode_g_1, encode_mark_1 Defined Pair Symbols: ENCARG_1, A__F_1, MARK_1, ENCODE_A__F_1, ENCODE_MARK_1 Compound Symbols: c_1, c2_1, c3_2, c4_2, c10_1, c11, c12_2, c13, c14, c1_1 ---------------------------------------- (15) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_a__f(z0) -> a__f(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_g(z0) -> g(encArg(z0)) encode_mark(z0) -> mark(encArg(z0)) ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(f(z0)) -> f(encArg(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) encArg(cons_a__f(z0)) -> a__f(encArg(z0)) encArg(cons_mark(z0)) -> mark(encArg(z0)) a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) mark(f(z0)) -> a__f(mark(z0)) mark(a) -> a mark(g(z0)) -> g(z0) Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) ENCARG(cons_mark(z0)) -> c4(MARK(encArg(z0)), ENCARG(z0)) A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 ENCODE_A__F(z0) -> c1(A__F(encArg(z0))) ENCODE_MARK(z0) -> c1(MARK(encArg(z0))) S tuples: A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 K tuples:none Defined Rule Symbols: encArg_1, a__f_1, mark_1 Defined Pair Symbols: ENCARG_1, A__F_1, MARK_1, ENCODE_A__F_1, ENCODE_MARK_1 Compound Symbols: c_1, c2_1, c3_2, c4_2, c10_1, c11, c12_2, c13, c14, c1_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. MARK(a) -> c13 MARK(g(z0)) -> c14 We considered the (Usable) Rules:none And the Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) ENCARG(cons_mark(z0)) -> c4(MARK(encArg(z0)), ENCARG(z0)) A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 ENCODE_A__F(z0) -> c1(A__F(encArg(z0))) ENCODE_MARK(z0) -> c1(MARK(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A__F(x_1)) = 0 POL(ENCARG(x_1)) = x_1 POL(ENCODE_A__F(x_1)) = 0 POL(ENCODE_MARK(x_1)) = [1] POL(MARK(x_1)) = [1] POL(a) = 0 POL(a__f(x_1)) = [1] POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c10(x_1)) = x_1 POL(c11) = 0 POL(c12(x_1, x_2)) = x_1 + x_2 POL(c13) = 0 POL(c14) = 0 POL(c2(x_1)) = x_1 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1, x_2)) = x_1 + x_2 POL(cons_a__f(x_1)) = [1] + x_1 POL(cons_mark(x_1)) = [1] + x_1 POL(encArg(x_1)) = [1] POL(f(x_1)) = x_1 POL(g(x_1)) = x_1 POL(mark(x_1)) = [1] ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(f(z0)) -> f(encArg(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) encArg(cons_a__f(z0)) -> a__f(encArg(z0)) encArg(cons_mark(z0)) -> mark(encArg(z0)) a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) mark(f(z0)) -> a__f(mark(z0)) mark(a) -> a mark(g(z0)) -> g(z0) Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) ENCARG(cons_mark(z0)) -> c4(MARK(encArg(z0)), ENCARG(z0)) A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 ENCODE_A__F(z0) -> c1(A__F(encArg(z0))) ENCODE_MARK(z0) -> c1(MARK(encArg(z0))) S tuples: A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) K tuples: MARK(a) -> c13 MARK(g(z0)) -> c14 Defined Rule Symbols: encArg_1, a__f_1, mark_1 Defined Pair Symbols: ENCARG_1, A__F_1, MARK_1, ENCODE_A__F_1, ENCODE_MARK_1 Compound Symbols: c_1, c2_1, c3_2, c4_2, c10_1, c11, c12_2, c13, c14, c1_1 ---------------------------------------- (19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) We considered the (Usable) Rules: encArg(cons_a__f(z0)) -> a__f(encArg(z0)) mark(a) -> a a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) encArg(cons_mark(z0)) -> mark(encArg(z0)) mark(f(z0)) -> a__f(mark(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) mark(g(z0)) -> g(z0) encArg(f(z0)) -> f(encArg(z0)) And the Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) ENCARG(cons_mark(z0)) -> c4(MARK(encArg(z0)), ENCARG(z0)) A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 ENCODE_A__F(z0) -> c1(A__F(encArg(z0))) ENCODE_MARK(z0) -> c1(MARK(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A__F(x_1)) = [1] POL(ENCARG(x_1)) = [2]x_1^2 POL(ENCODE_A__F(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(ENCODE_MARK(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(MARK(x_1)) = x_1 POL(a) = [2] POL(a__f(x_1)) = [2] + x_1 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c10(x_1)) = x_1 POL(c11) = 0 POL(c12(x_1, x_2)) = x_1 + x_2 POL(c13) = 0 POL(c14) = 0 POL(c2(x_1)) = x_1 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1, x_2)) = x_1 + x_2 POL(cons_a__f(x_1)) = [1] + x_1 POL(cons_mark(x_1)) = [2] + x_1 POL(encArg(x_1)) = [2] + [2]x_1 POL(f(x_1)) = [2] + x_1 POL(g(x_1)) = x_1 POL(mark(x_1)) = [2] + x_1 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(f(z0)) -> f(encArg(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) encArg(cons_a__f(z0)) -> a__f(encArg(z0)) encArg(cons_mark(z0)) -> mark(encArg(z0)) a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) mark(f(z0)) -> a__f(mark(z0)) mark(a) -> a mark(g(z0)) -> g(z0) Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) ENCARG(cons_mark(z0)) -> c4(MARK(encArg(z0)), ENCARG(z0)) A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 ENCODE_A__F(z0) -> c1(A__F(encArg(z0))) ENCODE_MARK(z0) -> c1(MARK(encArg(z0))) S tuples: A__F(f(a)) -> c10(A__F(g(f(a)))) K tuples: MARK(a) -> c13 MARK(g(z0)) -> c14 A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) Defined Rule Symbols: encArg_1, a__f_1, mark_1 Defined Pair Symbols: ENCARG_1, A__F_1, MARK_1, ENCODE_A__F_1, ENCODE_MARK_1 Compound Symbols: c_1, c2_1, c3_2, c4_2, c10_1, c11, c12_2, c13, c14, c1_1 ---------------------------------------- (21) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCARG(cons_mark(z0)) -> c4(MARK(encArg(z0)), ENCARG(z0)) by ENCARG(cons_mark(f(z0))) -> c4(MARK(f(encArg(z0))), ENCARG(f(z0))) ENCARG(cons_mark(a)) -> c4(MARK(a), ENCARG(a)) ENCARG(cons_mark(g(z0))) -> c4(MARK(g(encArg(z0))), ENCARG(g(z0))) ENCARG(cons_mark(cons_a__f(z0))) -> c4(MARK(a__f(encArg(z0))), ENCARG(cons_a__f(z0))) ENCARG(cons_mark(cons_mark(z0))) -> c4(MARK(mark(encArg(z0))), ENCARG(cons_mark(z0))) ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: encArg(f(z0)) -> f(encArg(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) encArg(cons_a__f(z0)) -> a__f(encArg(z0)) encArg(cons_mark(z0)) -> mark(encArg(z0)) a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) mark(f(z0)) -> a__f(mark(z0)) mark(a) -> a mark(g(z0)) -> g(z0) Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) A__F(f(a)) -> c10(A__F(g(f(a)))) A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) MARK(a) -> c13 MARK(g(z0)) -> c14 ENCODE_A__F(z0) -> c1(A__F(encArg(z0))) ENCODE_MARK(z0) -> c1(MARK(encArg(z0))) ENCARG(cons_mark(f(z0))) -> c4(MARK(f(encArg(z0))), ENCARG(f(z0))) ENCARG(cons_mark(a)) -> c4(MARK(a), ENCARG(a)) ENCARG(cons_mark(g(z0))) -> c4(MARK(g(encArg(z0))), ENCARG(g(z0))) ENCARG(cons_mark(cons_a__f(z0))) -> c4(MARK(a__f(encArg(z0))), ENCARG(cons_a__f(z0))) ENCARG(cons_mark(cons_mark(z0))) -> c4(MARK(mark(encArg(z0))), ENCARG(cons_mark(z0))) S tuples: A__F(f(a)) -> c10(A__F(g(f(a)))) K tuples: MARK(a) -> c13 MARK(g(z0)) -> c14 A__F(z0) -> c11 MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) Defined Rule Symbols: encArg_1, a__f_1, mark_1 Defined Pair Symbols: ENCARG_1, A__F_1, MARK_1, ENCODE_A__F_1, ENCODE_MARK_1 Compound Symbols: c_1, c2_1, c3_2, c10_1, c11, c12_2, c13, c14, c1_1, c4_2 ---------------------------------------- (23) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 4 trailing nodes: A__F(z0) -> c11 ENCARG(cons_mark(a)) -> c4(MARK(a), ENCARG(a)) MARK(a) -> c13 MARK(g(z0)) -> c14 ---------------------------------------- (24) Obligation: Complexity Dependency Tuples Problem Rules: encArg(f(z0)) -> f(encArg(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) encArg(cons_a__f(z0)) -> a__f(encArg(z0)) encArg(cons_mark(z0)) -> mark(encArg(z0)) a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) mark(f(z0)) -> a__f(mark(z0)) mark(a) -> a mark(g(z0)) -> g(z0) Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) A__F(f(a)) -> c10(A__F(g(f(a)))) MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) ENCODE_A__F(z0) -> c1(A__F(encArg(z0))) ENCODE_MARK(z0) -> c1(MARK(encArg(z0))) ENCARG(cons_mark(f(z0))) -> c4(MARK(f(encArg(z0))), ENCARG(f(z0))) ENCARG(cons_mark(g(z0))) -> c4(MARK(g(encArg(z0))), ENCARG(g(z0))) ENCARG(cons_mark(cons_a__f(z0))) -> c4(MARK(a__f(encArg(z0))), ENCARG(cons_a__f(z0))) ENCARG(cons_mark(cons_mark(z0))) -> c4(MARK(mark(encArg(z0))), ENCARG(cons_mark(z0))) S tuples: A__F(f(a)) -> c10(A__F(g(f(a)))) K tuples: MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) Defined Rule Symbols: encArg_1, a__f_1, mark_1 Defined Pair Symbols: ENCARG_1, A__F_1, MARK_1, ENCODE_A__F_1, ENCODE_MARK_1 Compound Symbols: c_1, c2_1, c3_2, c10_1, c12_2, c1_1, c4_2 ---------------------------------------- (25) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing tuple parts ---------------------------------------- (26) Obligation: Complexity Dependency Tuples Problem Rules: encArg(f(z0)) -> f(encArg(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) encArg(cons_a__f(z0)) -> a__f(encArg(z0)) encArg(cons_mark(z0)) -> mark(encArg(z0)) a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) mark(f(z0)) -> a__f(mark(z0)) mark(a) -> a mark(g(z0)) -> g(z0) Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) ENCODE_A__F(z0) -> c1(A__F(encArg(z0))) ENCODE_MARK(z0) -> c1(MARK(encArg(z0))) ENCARG(cons_mark(f(z0))) -> c4(MARK(f(encArg(z0))), ENCARG(f(z0))) ENCARG(cons_mark(cons_a__f(z0))) -> c4(MARK(a__f(encArg(z0))), ENCARG(cons_a__f(z0))) ENCARG(cons_mark(cons_mark(z0))) -> c4(MARK(mark(encArg(z0))), ENCARG(cons_mark(z0))) A__F(f(a)) -> c10 ENCARG(cons_mark(g(z0))) -> c4(ENCARG(g(z0))) S tuples: A__F(f(a)) -> c10 K tuples: MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) Defined Rule Symbols: encArg_1, a__f_1, mark_1 Defined Pair Symbols: ENCARG_1, MARK_1, ENCODE_A__F_1, ENCODE_MARK_1, A__F_1 Compound Symbols: c_1, c2_1, c3_2, c12_2, c1_1, c4_2, c10, c4_1 ---------------------------------------- (27) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. A__F(f(a)) -> c10 We considered the (Usable) Rules: encArg(cons_a__f(z0)) -> a__f(encArg(z0)) mark(a) -> a a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) encArg(cons_mark(z0)) -> mark(encArg(z0)) mark(f(z0)) -> a__f(mark(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) mark(g(z0)) -> g(z0) encArg(f(z0)) -> f(encArg(z0)) And the Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) ENCODE_A__F(z0) -> c1(A__F(encArg(z0))) ENCODE_MARK(z0) -> c1(MARK(encArg(z0))) ENCARG(cons_mark(f(z0))) -> c4(MARK(f(encArg(z0))), ENCARG(f(z0))) ENCARG(cons_mark(cons_a__f(z0))) -> c4(MARK(a__f(encArg(z0))), ENCARG(cons_a__f(z0))) ENCARG(cons_mark(cons_mark(z0))) -> c4(MARK(mark(encArg(z0))), ENCARG(cons_mark(z0))) A__F(f(a)) -> c10 ENCARG(cons_mark(g(z0))) -> c4(ENCARG(g(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A__F(x_1)) = [1] POL(ENCARG(x_1)) = x_1^2 POL(ENCODE_A__F(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(ENCODE_MARK(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(MARK(x_1)) = [2] + x_1 POL(a) = 0 POL(a__f(x_1)) = [2] + x_1 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c10) = 0 POL(c12(x_1, x_2)) = x_1 + x_2 POL(c2(x_1)) = x_1 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1)) = x_1 POL(c4(x_1, x_2)) = x_1 + x_2 POL(cons_a__f(x_1)) = [2] + x_1 POL(cons_mark(x_1)) = [2] + x_1 POL(encArg(x_1)) = [2]x_1 POL(f(x_1)) = [2] + x_1 POL(g(x_1)) = x_1 POL(mark(x_1)) = x_1 ---------------------------------------- (28) Obligation: Complexity Dependency Tuples Problem Rules: encArg(f(z0)) -> f(encArg(z0)) encArg(a) -> a encArg(g(z0)) -> g(encArg(z0)) encArg(cons_a__f(z0)) -> a__f(encArg(z0)) encArg(cons_mark(z0)) -> mark(encArg(z0)) a__f(f(a)) -> a__f(g(f(a))) a__f(z0) -> f(z0) mark(f(z0)) -> a__f(mark(z0)) mark(a) -> a mark(g(z0)) -> g(z0) Tuples: ENCARG(f(z0)) -> c(ENCARG(z0)) ENCARG(g(z0)) -> c2(ENCARG(z0)) ENCARG(cons_a__f(z0)) -> c3(A__F(encArg(z0)), ENCARG(z0)) MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) ENCODE_A__F(z0) -> c1(A__F(encArg(z0))) ENCODE_MARK(z0) -> c1(MARK(encArg(z0))) ENCARG(cons_mark(f(z0))) -> c4(MARK(f(encArg(z0))), ENCARG(f(z0))) ENCARG(cons_mark(cons_a__f(z0))) -> c4(MARK(a__f(encArg(z0))), ENCARG(cons_a__f(z0))) ENCARG(cons_mark(cons_mark(z0))) -> c4(MARK(mark(encArg(z0))), ENCARG(cons_mark(z0))) A__F(f(a)) -> c10 ENCARG(cons_mark(g(z0))) -> c4(ENCARG(g(z0))) S tuples:none K tuples: MARK(f(z0)) -> c12(A__F(mark(z0)), MARK(z0)) A__F(f(a)) -> c10 Defined Rule Symbols: encArg_1, a__f_1, mark_1 Defined Pair Symbols: ENCARG_1, MARK_1, ENCODE_A__F_1, ENCODE_MARK_1, A__F_1 Compound Symbols: c_1, c2_1, c3_2, c12_2, c1_1, c4_2, c10, c4_1 ---------------------------------------- (29) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (30) BOUNDS(1, 1) ---------------------------------------- (31) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (32) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(mark(X)) mark(a) -> a mark(g(X)) -> g(X) a__f(X) -> f(X) The (relative) TRS S consists of the following rules: encArg(f(x_1)) -> f(encArg(x_1)) encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1) -> a__f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (33) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (34) Obligation: TRS: Rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(mark(X)) mark(a) -> a mark(g(X)) -> g(X) a__f(X) -> f(X) encArg(f(x_1)) -> f(encArg(x_1)) encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1) -> a__f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) Types: a__f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark a :: a:f:g:cons_a__f:cons_mark g :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark mark :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encArg :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark cons_a__f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark cons_mark :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_a__f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_a :: a:f:g:cons_a__f:cons_mark encode_g :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_mark :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark hole_a:f:g:cons_a__f:cons_mark1_0 :: a:f:g:cons_a__f:cons_mark gen_a:f:g:cons_a__f:cons_mark2_0 :: Nat -> a:f:g:cons_a__f:cons_mark ---------------------------------------- (35) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: a__f, mark, encArg They will be analysed ascendingly in the following order: a__f < mark a__f < encArg mark < encArg ---------------------------------------- (36) Obligation: TRS: Rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(mark(X)) mark(a) -> a mark(g(X)) -> g(X) a__f(X) -> f(X) encArg(f(x_1)) -> f(encArg(x_1)) encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1) -> a__f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) Types: a__f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark a :: a:f:g:cons_a__f:cons_mark g :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark mark :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encArg :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark cons_a__f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark cons_mark :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_a__f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_a :: a:f:g:cons_a__f:cons_mark encode_g :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_mark :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark hole_a:f:g:cons_a__f:cons_mark1_0 :: a:f:g:cons_a__f:cons_mark gen_a:f:g:cons_a__f:cons_mark2_0 :: Nat -> a:f:g:cons_a__f:cons_mark Generator Equations: gen_a:f:g:cons_a__f:cons_mark2_0(0) <=> a gen_a:f:g:cons_a__f:cons_mark2_0(+(x, 1)) <=> f(gen_a:f:g:cons_a__f:cons_mark2_0(x)) The following defined symbols remain to be analysed: a__f, mark, encArg They will be analysed ascendingly in the following order: a__f < mark a__f < encArg mark < encArg ---------------------------------------- (37) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: mark(gen_a:f:g:cons_a__f:cons_mark2_0(+(1, n29_0))) -> *3_0, rt in Omega(n29_0) Induction Base: mark(gen_a:f:g:cons_a__f:cons_mark2_0(+(1, 0))) Induction Step: mark(gen_a:f:g:cons_a__f:cons_mark2_0(+(1, +(n29_0, 1)))) ->_R^Omega(1) a__f(mark(gen_a:f:g:cons_a__f:cons_mark2_0(+(1, n29_0)))) ->_IH a__f(*3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (38) Complex Obligation (BEST) ---------------------------------------- (39) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(mark(X)) mark(a) -> a mark(g(X)) -> g(X) a__f(X) -> f(X) encArg(f(x_1)) -> f(encArg(x_1)) encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1) -> a__f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) Types: a__f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark a :: a:f:g:cons_a__f:cons_mark g :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark mark :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encArg :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark cons_a__f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark cons_mark :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_a__f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_a :: a:f:g:cons_a__f:cons_mark encode_g :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_mark :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark hole_a:f:g:cons_a__f:cons_mark1_0 :: a:f:g:cons_a__f:cons_mark gen_a:f:g:cons_a__f:cons_mark2_0 :: Nat -> a:f:g:cons_a__f:cons_mark Generator Equations: gen_a:f:g:cons_a__f:cons_mark2_0(0) <=> a gen_a:f:g:cons_a__f:cons_mark2_0(+(x, 1)) <=> f(gen_a:f:g:cons_a__f:cons_mark2_0(x)) The following defined symbols remain to be analysed: mark, encArg They will be analysed ascendingly in the following order: mark < encArg ---------------------------------------- (40) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (41) BOUNDS(n^1, INF) ---------------------------------------- (42) Obligation: TRS: Rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(mark(X)) mark(a) -> a mark(g(X)) -> g(X) a__f(X) -> f(X) encArg(f(x_1)) -> f(encArg(x_1)) encArg(a) -> a encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1) -> a__f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_g(x_1) -> g(encArg(x_1)) encode_mark(x_1) -> mark(encArg(x_1)) Types: a__f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark a :: a:f:g:cons_a__f:cons_mark g :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark mark :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encArg :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark cons_a__f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark cons_mark :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_a__f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_f :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_a :: a:f:g:cons_a__f:cons_mark encode_g :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark encode_mark :: a:f:g:cons_a__f:cons_mark -> a:f:g:cons_a__f:cons_mark hole_a:f:g:cons_a__f:cons_mark1_0 :: a:f:g:cons_a__f:cons_mark gen_a:f:g:cons_a__f:cons_mark2_0 :: Nat -> a:f:g:cons_a__f:cons_mark Lemmas: mark(gen_a:f:g:cons_a__f:cons_mark2_0(+(1, n29_0))) -> *3_0, rt in Omega(n29_0) Generator Equations: gen_a:f:g:cons_a__f:cons_mark2_0(0) <=> a gen_a:f:g:cons_a__f:cons_mark2_0(+(x, 1)) <=> f(gen_a:f:g:cons_a__f:cons_mark2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (43) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_a:f:g:cons_a__f:cons_mark2_0(n5029_0)) -> gen_a:f:g:cons_a__f:cons_mark2_0(n5029_0), rt in Omega(0) Induction Base: encArg(gen_a:f:g:cons_a__f:cons_mark2_0(0)) ->_R^Omega(0) a Induction Step: encArg(gen_a:f:g:cons_a__f:cons_mark2_0(+(n5029_0, 1))) ->_R^Omega(0) f(encArg(gen_a:f:g:cons_a__f:cons_mark2_0(n5029_0))) ->_IH f(gen_a:f:g:cons_a__f:cons_mark2_0(c5030_0)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (44) BOUNDS(1, INF)