/export/starexec/sandbox2/solver/bin/starexec_run_tct_dc /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?,O(n^1)) * Step 1: WeightGap. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: filter(cons(X),0(),M) -> cons(0()) filter(cons(X),s(N),M) -> cons(X) nats(N) -> cons(N) sieve(cons(0())) -> cons(0()) sieve(cons(s(N))) -> cons(s(N)) zprimes() -> sieve(nats(s(s(0())))) - Signature: {filter/3,nats/1,sieve/1,zprimes/0} / {0/0,cons/1,s/1} - Obligation: derivational complexity wrt. signature {0,cons,filter,nats,s,sieve,zprimes} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = NoUArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind triangular matrix interpretation: Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [9] p(cons) = [1] x1 + [0] p(filter) = [1] x1 + [1] x2 + [1] x3 + [0] p(nats) = [1] x1 + [3] p(s) = [1] x1 + [0] p(sieve) = [1] x1 + [2] p(zprimes) = [15] Following rules are strictly oriented: nats(N) = [1] N + [3] > [1] N + [0] = cons(N) sieve(cons(0())) = [11] > [9] = cons(0()) sieve(cons(s(N))) = [1] N + [2] > [1] N + [0] = cons(s(N)) zprimes() = [15] > [14] = sieve(nats(s(s(0())))) Following rules are (at-least) weakly oriented: filter(cons(X),0(),M) = [1] M + [1] X + [9] >= [9] = cons(0()) filter(cons(X),s(N),M) = [1] M + [1] N + [1] X + [0] >= [1] X + [0] = cons(X) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 2: WeightGap. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: filter(cons(X),0(),M) -> cons(0()) filter(cons(X),s(N),M) -> cons(X) - Weak TRS: nats(N) -> cons(N) sieve(cons(0())) -> cons(0()) sieve(cons(s(N))) -> cons(s(N)) zprimes() -> sieve(nats(s(s(0())))) - Signature: {filter/3,nats/1,sieve/1,zprimes/0} / {0/0,cons/1,s/1} - Obligation: derivational complexity wrt. signature {0,cons,filter,nats,s,sieve,zprimes} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = NoUArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind triangular matrix interpretation: Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [1] p(cons) = [1] x1 + [0] p(filter) = [1] x1 + [1] x2 + [1] x3 + [10] p(nats) = [1] x1 + [7] p(s) = [1] x1 + [0] p(sieve) = [1] x1 + [0] p(zprimes) = [8] Following rules are strictly oriented: filter(cons(X),0(),M) = [1] M + [1] X + [11] > [1] = cons(0()) filter(cons(X),s(N),M) = [1] M + [1] N + [1] X + [10] > [1] X + [0] = cons(X) Following rules are (at-least) weakly oriented: nats(N) = [1] N + [7] >= [1] N + [0] = cons(N) sieve(cons(0())) = [1] >= [1] = cons(0()) sieve(cons(s(N))) = [1] N + [0] >= [1] N + [0] = cons(s(N)) zprimes() = [8] >= [8] = sieve(nats(s(s(0())))) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 3: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: filter(cons(X),0(),M) -> cons(0()) filter(cons(X),s(N),M) -> cons(X) nats(N) -> cons(N) sieve(cons(0())) -> cons(0()) sieve(cons(s(N))) -> cons(s(N)) zprimes() -> sieve(nats(s(s(0())))) - Signature: {filter/3,nats/1,sieve/1,zprimes/0} / {0/0,cons/1,s/1} - Obligation: derivational complexity wrt. signature {0,cons,filter,nats,s,sieve,zprimes} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))