/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 188 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsTAProof [FINISHED, 97 ms] (8) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: first(0, X) -> nil first(s(X), cons(Y)) -> cons(Y) from(X) -> cons(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(nil) -> nil encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons(x_1)) -> cons(encArg(x_1)) encArg(cons_first(x_1, x_2)) -> first(encArg(x_1), encArg(x_2)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encode_first(x_1, x_2) -> first(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_nil -> nil encode_s(x_1) -> s(encArg(x_1)) encode_cons(x_1) -> cons(encArg(x_1)) encode_from(x_1) -> from(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: first(0, X) -> nil first(s(X), cons(Y)) -> cons(Y) from(X) -> cons(X) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(nil) -> nil encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons(x_1)) -> cons(encArg(x_1)) encArg(cons_first(x_1, x_2)) -> first(encArg(x_1), encArg(x_2)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encode_first(x_1, x_2) -> first(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_nil -> nil encode_s(x_1) -> s(encArg(x_1)) encode_cons(x_1) -> cons(encArg(x_1)) encode_from(x_1) -> from(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: first(0, X) -> nil first(s(X), cons(Y)) -> cons(Y) from(X) -> cons(X) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(nil) -> nil encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons(x_1)) -> cons(encArg(x_1)) encArg(cons_first(x_1, x_2)) -> first(encArg(x_1), encArg(x_2)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encode_first(x_1, x_2) -> first(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_nil -> nil encode_s(x_1) -> s(encArg(x_1)) encode_cons(x_1) -> cons(encArg(x_1)) encode_from(x_1) -> from(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: first(0, X) -> nil first(s(X), cons(Y)) -> cons(Y) from(X) -> cons(X) encArg(0) -> 0 encArg(nil) -> nil encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons(x_1)) -> cons(encArg(x_1)) encArg(cons_first(x_1, x_2)) -> first(encArg(x_1), encArg(x_2)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encode_first(x_1, x_2) -> first(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_nil -> nil encode_s(x_1) -> s(encArg(x_1)) encode_cons(x_1) -> cons(encArg(x_1)) encode_from(x_1) -> from(encArg(x_1)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7, 8, 9] transitions: 00() -> 0 nil0() -> 0 s0(0) -> 0 cons0(0) -> 0 cons_first0(0, 0) -> 0 cons_from0(0) -> 0 first0(0, 0) -> 1 from0(0) -> 2 encArg0(0) -> 3 encode_first0(0, 0) -> 4 encode_00() -> 5 encode_nil0() -> 6 encode_s0(0) -> 7 encode_cons0(0) -> 8 encode_from0(0) -> 9 nil1() -> 1 cons1(0) -> 1 cons1(0) -> 2 01() -> 3 nil1() -> 3 encArg1(0) -> 10 s1(10) -> 3 encArg1(0) -> 11 cons1(11) -> 3 encArg1(0) -> 12 encArg1(0) -> 13 first1(12, 13) -> 3 encArg1(0) -> 14 from1(14) -> 3 first1(12, 13) -> 4 01() -> 5 nil1() -> 6 s1(10) -> 7 cons1(11) -> 8 from1(14) -> 9 cons2(14) -> 3 cons2(14) -> 9 01() -> 10 01() -> 11 01() -> 12 01() -> 13 01() -> 14 nil1() -> 10 nil1() -> 11 nil1() -> 12 nil1() -> 13 nil1() -> 14 s1(10) -> 10 s1(10) -> 11 s1(10) -> 12 s1(10) -> 13 s1(10) -> 14 cons1(11) -> 10 cons1(11) -> 11 cons1(11) -> 12 cons1(11) -> 13 cons1(11) -> 14 first1(12, 13) -> 10 first1(12, 13) -> 11 first1(12, 13) -> 12 first1(12, 13) -> 13 first1(12, 13) -> 14 from1(14) -> 10 from1(14) -> 11 from1(14) -> 12 from1(14) -> 13 from1(14) -> 14 nil2() -> 3 nil2() -> 4 nil2() -> 10 nil2() -> 11 nil2() -> 12 nil2() -> 13 nil2() -> 14 cons2(11) -> 3 cons2(11) -> 4 cons2(11) -> 10 cons2(11) -> 11 cons2(11) -> 12 cons2(11) -> 13 cons2(11) -> 14 cons2(14) -> 10 cons2(14) -> 11 cons2(14) -> 12 cons2(14) -> 13 cons2(14) -> 14 cons2(14) -> 4 ---------------------------------------- (8) BOUNDS(1, n^1)