/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 396 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(nats) -> mark(adx(zeros)) active(zeros) -> mark(cons(0, zeros)) active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y))) active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y)))) active(hd(cons(X, Y))) -> mark(X) active(tl(cons(X, Y))) -> mark(Y) active(adx(X)) -> adx(active(X)) active(incr(X)) -> incr(active(X)) active(hd(X)) -> hd(active(X)) active(tl(X)) -> tl(active(X)) adx(mark(X)) -> mark(adx(X)) incr(mark(X)) -> mark(incr(X)) hd(mark(X)) -> mark(hd(X)) tl(mark(X)) -> mark(tl(X)) proper(nats) -> ok(nats) proper(adx(X)) -> adx(proper(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) proper(incr(X)) -> incr(proper(X)) proper(s(X)) -> s(proper(X)) proper(hd(X)) -> hd(proper(X)) proper(tl(X)) -> tl(proper(X)) adx(ok(X)) -> ok(adx(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) incr(ok(X)) -> ok(incr(X)) s(ok(X)) -> ok(s(X)) hd(ok(X)) -> ok(hd(X)) tl(ok(X)) -> ok(tl(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(nats) -> nats encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(zeros) -> zeros encArg(0) -> 0 encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_adx(x_1)) -> adx(encArg(x_1)) encArg(cons_incr(x_1)) -> incr(encArg(x_1)) encArg(cons_hd(x_1)) -> hd(encArg(x_1)) encArg(cons_tl(x_1)) -> tl(encArg(x_1)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_nats -> nats encode_mark(x_1) -> mark(encArg(x_1)) encode_adx(x_1) -> adx(encArg(x_1)) encode_zeros -> zeros encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_incr(x_1) -> incr(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_hd(x_1) -> hd(encArg(x_1)) encode_tl(x_1) -> tl(encArg(x_1)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_top(x_1) -> top(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(nats) -> mark(adx(zeros)) active(zeros) -> mark(cons(0, zeros)) active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y))) active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y)))) active(hd(cons(X, Y))) -> mark(X) active(tl(cons(X, Y))) -> mark(Y) active(adx(X)) -> adx(active(X)) active(incr(X)) -> incr(active(X)) active(hd(X)) -> hd(active(X)) active(tl(X)) -> tl(active(X)) adx(mark(X)) -> mark(adx(X)) incr(mark(X)) -> mark(incr(X)) hd(mark(X)) -> mark(hd(X)) tl(mark(X)) -> mark(tl(X)) proper(nats) -> ok(nats) proper(adx(X)) -> adx(proper(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) proper(incr(X)) -> incr(proper(X)) proper(s(X)) -> s(proper(X)) proper(hd(X)) -> hd(proper(X)) proper(tl(X)) -> tl(proper(X)) adx(ok(X)) -> ok(adx(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) incr(ok(X)) -> ok(incr(X)) s(ok(X)) -> ok(s(X)) hd(ok(X)) -> ok(hd(X)) tl(ok(X)) -> ok(tl(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) The (relative) TRS S consists of the following rules: encArg(nats) -> nats encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(zeros) -> zeros encArg(0) -> 0 encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_adx(x_1)) -> adx(encArg(x_1)) encArg(cons_incr(x_1)) -> incr(encArg(x_1)) encArg(cons_hd(x_1)) -> hd(encArg(x_1)) encArg(cons_tl(x_1)) -> tl(encArg(x_1)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_nats -> nats encode_mark(x_1) -> mark(encArg(x_1)) encode_adx(x_1) -> adx(encArg(x_1)) encode_zeros -> zeros encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_incr(x_1) -> incr(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_hd(x_1) -> hd(encArg(x_1)) encode_tl(x_1) -> tl(encArg(x_1)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_top(x_1) -> top(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(nats) -> mark(adx(zeros)) active(zeros) -> mark(cons(0, zeros)) active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y))) active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y)))) active(hd(cons(X, Y))) -> mark(X) active(tl(cons(X, Y))) -> mark(Y) active(adx(X)) -> adx(active(X)) active(incr(X)) -> incr(active(X)) active(hd(X)) -> hd(active(X)) active(tl(X)) -> tl(active(X)) adx(mark(X)) -> mark(adx(X)) incr(mark(X)) -> mark(incr(X)) hd(mark(X)) -> mark(hd(X)) tl(mark(X)) -> mark(tl(X)) proper(nats) -> ok(nats) proper(adx(X)) -> adx(proper(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) proper(incr(X)) -> incr(proper(X)) proper(s(X)) -> s(proper(X)) proper(hd(X)) -> hd(proper(X)) proper(tl(X)) -> tl(proper(X)) adx(ok(X)) -> ok(adx(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) incr(ok(X)) -> ok(incr(X)) s(ok(X)) -> ok(s(X)) hd(ok(X)) -> ok(hd(X)) tl(ok(X)) -> ok(tl(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) The (relative) TRS S consists of the following rules: encArg(nats) -> nats encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(zeros) -> zeros encArg(0) -> 0 encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_adx(x_1)) -> adx(encArg(x_1)) encArg(cons_incr(x_1)) -> incr(encArg(x_1)) encArg(cons_hd(x_1)) -> hd(encArg(x_1)) encArg(cons_tl(x_1)) -> tl(encArg(x_1)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_nats -> nats encode_mark(x_1) -> mark(encArg(x_1)) encode_adx(x_1) -> adx(encArg(x_1)) encode_zeros -> zeros encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_incr(x_1) -> incr(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_hd(x_1) -> hd(encArg(x_1)) encode_tl(x_1) -> tl(encArg(x_1)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_top(x_1) -> top(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(nats) -> mark(adx(zeros)) active(zeros) -> mark(cons(0, zeros)) active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y))) active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y)))) active(hd(cons(X, Y))) -> mark(X) active(tl(cons(X, Y))) -> mark(Y) active(adx(X)) -> adx(active(X)) active(incr(X)) -> incr(active(X)) active(hd(X)) -> hd(active(X)) active(tl(X)) -> tl(active(X)) adx(mark(X)) -> mark(adx(X)) incr(mark(X)) -> mark(incr(X)) hd(mark(X)) -> mark(hd(X)) tl(mark(X)) -> mark(tl(X)) proper(nats) -> ok(nats) proper(adx(X)) -> adx(proper(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) proper(incr(X)) -> incr(proper(X)) proper(s(X)) -> s(proper(X)) proper(hd(X)) -> hd(proper(X)) proper(tl(X)) -> tl(proper(X)) adx(ok(X)) -> ok(adx(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) incr(ok(X)) -> ok(incr(X)) s(ok(X)) -> ok(s(X)) hd(ok(X)) -> ok(hd(X)) tl(ok(X)) -> ok(tl(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) The (relative) TRS S consists of the following rules: encArg(nats) -> nats encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(zeros) -> zeros encArg(0) -> 0 encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_adx(x_1)) -> adx(encArg(x_1)) encArg(cons_incr(x_1)) -> incr(encArg(x_1)) encArg(cons_hd(x_1)) -> hd(encArg(x_1)) encArg(cons_tl(x_1)) -> tl(encArg(x_1)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_nats -> nats encode_mark(x_1) -> mark(encArg(x_1)) encode_adx(x_1) -> adx(encArg(x_1)) encode_zeros -> zeros encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_incr(x_1) -> incr(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_hd(x_1) -> hd(encArg(x_1)) encode_tl(x_1) -> tl(encArg(x_1)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_top(x_1) -> top(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence hd(mark(X)) ->^+ mark(hd(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / mark(X)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(nats) -> mark(adx(zeros)) active(zeros) -> mark(cons(0, zeros)) active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y))) active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y)))) active(hd(cons(X, Y))) -> mark(X) active(tl(cons(X, Y))) -> mark(Y) active(adx(X)) -> adx(active(X)) active(incr(X)) -> incr(active(X)) active(hd(X)) -> hd(active(X)) active(tl(X)) -> tl(active(X)) adx(mark(X)) -> mark(adx(X)) incr(mark(X)) -> mark(incr(X)) hd(mark(X)) -> mark(hd(X)) tl(mark(X)) -> mark(tl(X)) proper(nats) -> ok(nats) proper(adx(X)) -> adx(proper(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) proper(incr(X)) -> incr(proper(X)) proper(s(X)) -> s(proper(X)) proper(hd(X)) -> hd(proper(X)) proper(tl(X)) -> tl(proper(X)) adx(ok(X)) -> ok(adx(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) incr(ok(X)) -> ok(incr(X)) s(ok(X)) -> ok(s(X)) hd(ok(X)) -> ok(hd(X)) tl(ok(X)) -> ok(tl(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) The (relative) TRS S consists of the following rules: encArg(nats) -> nats encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(zeros) -> zeros encArg(0) -> 0 encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_adx(x_1)) -> adx(encArg(x_1)) encArg(cons_incr(x_1)) -> incr(encArg(x_1)) encArg(cons_hd(x_1)) -> hd(encArg(x_1)) encArg(cons_tl(x_1)) -> tl(encArg(x_1)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_nats -> nats encode_mark(x_1) -> mark(encArg(x_1)) encode_adx(x_1) -> adx(encArg(x_1)) encode_zeros -> zeros encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_incr(x_1) -> incr(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_hd(x_1) -> hd(encArg(x_1)) encode_tl(x_1) -> tl(encArg(x_1)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_top(x_1) -> top(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(nats) -> mark(adx(zeros)) active(zeros) -> mark(cons(0, zeros)) active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y))) active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y)))) active(hd(cons(X, Y))) -> mark(X) active(tl(cons(X, Y))) -> mark(Y) active(adx(X)) -> adx(active(X)) active(incr(X)) -> incr(active(X)) active(hd(X)) -> hd(active(X)) active(tl(X)) -> tl(active(X)) adx(mark(X)) -> mark(adx(X)) incr(mark(X)) -> mark(incr(X)) hd(mark(X)) -> mark(hd(X)) tl(mark(X)) -> mark(tl(X)) proper(nats) -> ok(nats) proper(adx(X)) -> adx(proper(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) proper(incr(X)) -> incr(proper(X)) proper(s(X)) -> s(proper(X)) proper(hd(X)) -> hd(proper(X)) proper(tl(X)) -> tl(proper(X)) adx(ok(X)) -> ok(adx(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) incr(ok(X)) -> ok(incr(X)) s(ok(X)) -> ok(s(X)) hd(ok(X)) -> ok(hd(X)) tl(ok(X)) -> ok(tl(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) The (relative) TRS S consists of the following rules: encArg(nats) -> nats encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(zeros) -> zeros encArg(0) -> 0 encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_adx(x_1)) -> adx(encArg(x_1)) encArg(cons_incr(x_1)) -> incr(encArg(x_1)) encArg(cons_hd(x_1)) -> hd(encArg(x_1)) encArg(cons_tl(x_1)) -> tl(encArg(x_1)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_nats -> nats encode_mark(x_1) -> mark(encArg(x_1)) encode_adx(x_1) -> adx(encArg(x_1)) encode_zeros -> zeros encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_incr(x_1) -> incr(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_hd(x_1) -> hd(encArg(x_1)) encode_tl(x_1) -> tl(encArg(x_1)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_top(x_1) -> top(encArg(x_1)) Rewrite Strategy: FULL