/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 183 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsTAProof [FINISHED, 187 ms] (8) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: app(nil, YS) -> YS app(cons(X), YS) -> cons(X) from(X) -> cons(X) zWadr(nil, YS) -> nil zWadr(XS, nil) -> nil zWadr(cons(X), cons(Y)) -> cons(app(Y, cons(X))) prefix(L) -> cons(nil) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(nil) -> nil encArg(cons(x_1)) -> cons(encArg(x_1)) encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_zWadr(x_1, x_2)) -> zWadr(encArg(x_1), encArg(x_2)) encArg(cons_prefix(x_1)) -> prefix(encArg(x_1)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1) -> cons(encArg(x_1)) encode_from(x_1) -> from(encArg(x_1)) encode_zWadr(x_1, x_2) -> zWadr(encArg(x_1), encArg(x_2)) encode_prefix(x_1) -> prefix(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: app(nil, YS) -> YS app(cons(X), YS) -> cons(X) from(X) -> cons(X) zWadr(nil, YS) -> nil zWadr(XS, nil) -> nil zWadr(cons(X), cons(Y)) -> cons(app(Y, cons(X))) prefix(L) -> cons(nil) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(cons(x_1)) -> cons(encArg(x_1)) encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_zWadr(x_1, x_2)) -> zWadr(encArg(x_1), encArg(x_2)) encArg(cons_prefix(x_1)) -> prefix(encArg(x_1)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1) -> cons(encArg(x_1)) encode_from(x_1) -> from(encArg(x_1)) encode_zWadr(x_1, x_2) -> zWadr(encArg(x_1), encArg(x_2)) encode_prefix(x_1) -> prefix(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: app(nil, YS) -> YS app(cons(X), YS) -> cons(X) from(X) -> cons(X) zWadr(nil, YS) -> nil zWadr(XS, nil) -> nil zWadr(cons(X), cons(Y)) -> cons(app(Y, cons(X))) prefix(L) -> cons(nil) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(cons(x_1)) -> cons(encArg(x_1)) encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_zWadr(x_1, x_2)) -> zWadr(encArg(x_1), encArg(x_2)) encArg(cons_prefix(x_1)) -> prefix(encArg(x_1)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1) -> cons(encArg(x_1)) encode_from(x_1) -> from(encArg(x_1)) encode_zWadr(x_1, x_2) -> zWadr(encArg(x_1), encArg(x_2)) encode_prefix(x_1) -> prefix(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: app(nil, YS) -> YS app(cons(X), YS) -> cons(X) from(X) -> cons(X) zWadr(nil, YS) -> nil zWadr(XS, nil) -> nil zWadr(cons(X), cons(Y)) -> cons(app(Y, cons(X))) prefix(L) -> cons(nil) encArg(nil) -> nil encArg(cons(x_1)) -> cons(encArg(x_1)) encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_from(x_1)) -> from(encArg(x_1)) encArg(cons_zWadr(x_1, x_2)) -> zWadr(encArg(x_1), encArg(x_2)) encArg(cons_prefix(x_1)) -> prefix(encArg(x_1)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1) -> cons(encArg(x_1)) encode_from(x_1) -> from(encArg(x_1)) encode_zWadr(x_1, x_2) -> zWadr(encArg(x_1), encArg(x_2)) encode_prefix(x_1) -> prefix(encArg(x_1)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 3. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] transitions: nil0() -> 0 cons0(0) -> 0 cons_app0(0, 0) -> 0 cons_from0(0) -> 0 cons_zWadr0(0, 0) -> 0 cons_prefix0(0) -> 0 app0(0, 0) -> 1 from0(0) -> 2 zWadr0(0, 0) -> 3 prefix0(0) -> 4 encArg0(0) -> 5 encode_app0(0, 0) -> 6 encode_nil0() -> 7 encode_cons0(0) -> 8 encode_from0(0) -> 9 encode_zWadr0(0, 0) -> 10 encode_prefix0(0) -> 11 cons1(0) -> 1 cons1(0) -> 2 nil1() -> 3 cons1(0) -> 13 app1(0, 13) -> 12 cons1(12) -> 3 nil1() -> 14 cons1(14) -> 4 nil1() -> 5 encArg1(0) -> 15 cons1(15) -> 5 encArg1(0) -> 16 encArg1(0) -> 17 app1(16, 17) -> 5 encArg1(0) -> 18 from1(18) -> 5 encArg1(0) -> 19 encArg1(0) -> 20 zWadr1(19, 20) -> 5 encArg1(0) -> 21 prefix1(21) -> 5 app1(16, 17) -> 6 nil1() -> 7 cons1(15) -> 8 from1(18) -> 9 zWadr1(19, 20) -> 10 prefix1(21) -> 11 cons2(18) -> 5 cons2(18) -> 9 nil2() -> 22 cons2(22) -> 5 cons2(22) -> 11 nil1() -> 15 nil1() -> 16 nil1() -> 17 nil1() -> 18 nil1() -> 19 nil1() -> 20 nil1() -> 21 cons1(15) -> 15 cons1(15) -> 16 cons1(15) -> 17 cons1(15) -> 18 cons1(15) -> 19 cons1(15) -> 20 cons1(15) -> 21 app1(16, 17) -> 15 app1(16, 17) -> 16 app1(16, 17) -> 17 app1(16, 17) -> 18 app1(16, 17) -> 19 app1(16, 17) -> 20 app1(16, 17) -> 21 from1(18) -> 15 from1(18) -> 16 from1(18) -> 17 from1(18) -> 18 from1(18) -> 19 from1(18) -> 20 from1(18) -> 21 zWadr1(19, 20) -> 15 zWadr1(19, 20) -> 16 zWadr1(19, 20) -> 17 zWadr1(19, 20) -> 18 zWadr1(19, 20) -> 19 zWadr1(19, 20) -> 20 zWadr1(19, 20) -> 21 prefix1(21) -> 15 prefix1(21) -> 16 prefix1(21) -> 17 prefix1(21) -> 18 prefix1(21) -> 19 prefix1(21) -> 20 prefix1(21) -> 21 cons2(15) -> 5 cons2(15) -> 6 cons2(15) -> 15 cons2(15) -> 16 cons2(15) -> 17 cons2(18) -> 15 cons2(18) -> 16 cons2(18) -> 17 nil2() -> 5 nil2() -> 10 nil2() -> 15 nil2() -> 16 nil2() -> 17 cons2(15) -> 24 app2(15, 24) -> 23 cons2(23) -> 5 cons2(23) -> 10 cons2(23) -> 15 cons2(23) -> 16 cons2(23) -> 17 app2(18, 24) -> 23 app2(23, 24) -> 23 cons2(18) -> 24 cons2(23) -> 24 cons3(15) -> 23 cons3(18) -> 23 cons3(23) -> 23 0 -> 1 13 -> 12 17 -> 5 17 -> 6 17 -> 15 17 -> 16 17 -> 18 17 -> 19 17 -> 20 17 -> 21 24 -> 23 ---------------------------------------- (8) BOUNDS(1, n^1)