/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 289 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a____(__(X, Y), Z) -> a____(mark(X), a____(mark(Y), mark(Z))) a____(X, nil) -> mark(X) a____(nil, X) -> mark(X) a__U11(tt) -> a__U12(tt) a__U12(tt) -> tt a__isNePal(__(I, __(P, I))) -> a__U11(tt) mark(__(X1, X2)) -> a____(mark(X1), mark(X2)) mark(U11(X)) -> a__U11(mark(X)) mark(U12(X)) -> a__U12(mark(X)) mark(isNePal(X)) -> a__isNePal(mark(X)) mark(nil) -> nil mark(tt) -> tt a____(X1, X2) -> __(X1, X2) a__U11(X) -> U11(X) a__U12(X) -> U12(X) a__isNePal(X) -> isNePal(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(__(x_1, x_2)) -> __(encArg(x_1), encArg(x_2)) encArg(nil) -> nil encArg(tt) -> tt encArg(U11(x_1)) -> U11(encArg(x_1)) encArg(U12(x_1)) -> U12(encArg(x_1)) encArg(isNePal(x_1)) -> isNePal(encArg(x_1)) encArg(cons_a____(x_1, x_2)) -> a____(encArg(x_1), encArg(x_2)) encArg(cons_a__U11(x_1)) -> a__U11(encArg(x_1)) encArg(cons_a__U12(x_1)) -> a__U12(encArg(x_1)) encArg(cons_a__isNePal(x_1)) -> a__isNePal(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a____(x_1, x_2) -> a____(encArg(x_1), encArg(x_2)) encode___(x_1, x_2) -> __(encArg(x_1), encArg(x_2)) encode_mark(x_1) -> mark(encArg(x_1)) encode_nil -> nil encode_a__U11(x_1) -> a__U11(encArg(x_1)) encode_tt -> tt encode_a__U12(x_1) -> a__U12(encArg(x_1)) encode_a__isNePal(x_1) -> a__isNePal(encArg(x_1)) encode_U11(x_1) -> U11(encArg(x_1)) encode_U12(x_1) -> U12(encArg(x_1)) encode_isNePal(x_1) -> isNePal(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a____(__(X, Y), Z) -> a____(mark(X), a____(mark(Y), mark(Z))) a____(X, nil) -> mark(X) a____(nil, X) -> mark(X) a__U11(tt) -> a__U12(tt) a__U12(tt) -> tt a__isNePal(__(I, __(P, I))) -> a__U11(tt) mark(__(X1, X2)) -> a____(mark(X1), mark(X2)) mark(U11(X)) -> a__U11(mark(X)) mark(U12(X)) -> a__U12(mark(X)) mark(isNePal(X)) -> a__isNePal(mark(X)) mark(nil) -> nil mark(tt) -> tt a____(X1, X2) -> __(X1, X2) a__U11(X) -> U11(X) a__U12(X) -> U12(X) a__isNePal(X) -> isNePal(X) The (relative) TRS S consists of the following rules: encArg(__(x_1, x_2)) -> __(encArg(x_1), encArg(x_2)) encArg(nil) -> nil encArg(tt) -> tt encArg(U11(x_1)) -> U11(encArg(x_1)) encArg(U12(x_1)) -> U12(encArg(x_1)) encArg(isNePal(x_1)) -> isNePal(encArg(x_1)) encArg(cons_a____(x_1, x_2)) -> a____(encArg(x_1), encArg(x_2)) encArg(cons_a__U11(x_1)) -> a__U11(encArg(x_1)) encArg(cons_a__U12(x_1)) -> a__U12(encArg(x_1)) encArg(cons_a__isNePal(x_1)) -> a__isNePal(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a____(x_1, x_2) -> a____(encArg(x_1), encArg(x_2)) encode___(x_1, x_2) -> __(encArg(x_1), encArg(x_2)) encode_mark(x_1) -> mark(encArg(x_1)) encode_nil -> nil encode_a__U11(x_1) -> a__U11(encArg(x_1)) encode_tt -> tt encode_a__U12(x_1) -> a__U12(encArg(x_1)) encode_a__isNePal(x_1) -> a__isNePal(encArg(x_1)) encode_U11(x_1) -> U11(encArg(x_1)) encode_U12(x_1) -> U12(encArg(x_1)) encode_isNePal(x_1) -> isNePal(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a____(__(X, Y), Z) -> a____(mark(X), a____(mark(Y), mark(Z))) a____(X, nil) -> mark(X) a____(nil, X) -> mark(X) a__U11(tt) -> a__U12(tt) a__U12(tt) -> tt a__isNePal(__(I, __(P, I))) -> a__U11(tt) mark(__(X1, X2)) -> a____(mark(X1), mark(X2)) mark(U11(X)) -> a__U11(mark(X)) mark(U12(X)) -> a__U12(mark(X)) mark(isNePal(X)) -> a__isNePal(mark(X)) mark(nil) -> nil mark(tt) -> tt a____(X1, X2) -> __(X1, X2) a__U11(X) -> U11(X) a__U12(X) -> U12(X) a__isNePal(X) -> isNePal(X) The (relative) TRS S consists of the following rules: encArg(__(x_1, x_2)) -> __(encArg(x_1), encArg(x_2)) encArg(nil) -> nil encArg(tt) -> tt encArg(U11(x_1)) -> U11(encArg(x_1)) encArg(U12(x_1)) -> U12(encArg(x_1)) encArg(isNePal(x_1)) -> isNePal(encArg(x_1)) encArg(cons_a____(x_1, x_2)) -> a____(encArg(x_1), encArg(x_2)) encArg(cons_a__U11(x_1)) -> a__U11(encArg(x_1)) encArg(cons_a__U12(x_1)) -> a__U12(encArg(x_1)) encArg(cons_a__isNePal(x_1)) -> a__isNePal(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a____(x_1, x_2) -> a____(encArg(x_1), encArg(x_2)) encode___(x_1, x_2) -> __(encArg(x_1), encArg(x_2)) encode_mark(x_1) -> mark(encArg(x_1)) encode_nil -> nil encode_a__U11(x_1) -> a__U11(encArg(x_1)) encode_tt -> tt encode_a__U12(x_1) -> a__U12(encArg(x_1)) encode_a__isNePal(x_1) -> a__isNePal(encArg(x_1)) encode_U11(x_1) -> U11(encArg(x_1)) encode_U12(x_1) -> U12(encArg(x_1)) encode_isNePal(x_1) -> isNePal(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a____(__(X, Y), Z) -> a____(mark(X), a____(mark(Y), mark(Z))) a____(X, nil) -> mark(X) a____(nil, X) -> mark(X) a__U11(tt) -> a__U12(tt) a__U12(tt) -> tt a__isNePal(__(I, __(P, I))) -> a__U11(tt) mark(__(X1, X2)) -> a____(mark(X1), mark(X2)) mark(U11(X)) -> a__U11(mark(X)) mark(U12(X)) -> a__U12(mark(X)) mark(isNePal(X)) -> a__isNePal(mark(X)) mark(nil) -> nil mark(tt) -> tt a____(X1, X2) -> __(X1, X2) a__U11(X) -> U11(X) a__U12(X) -> U12(X) a__isNePal(X) -> isNePal(X) The (relative) TRS S consists of the following rules: encArg(__(x_1, x_2)) -> __(encArg(x_1), encArg(x_2)) encArg(nil) -> nil encArg(tt) -> tt encArg(U11(x_1)) -> U11(encArg(x_1)) encArg(U12(x_1)) -> U12(encArg(x_1)) encArg(isNePal(x_1)) -> isNePal(encArg(x_1)) encArg(cons_a____(x_1, x_2)) -> a____(encArg(x_1), encArg(x_2)) encArg(cons_a__U11(x_1)) -> a__U11(encArg(x_1)) encArg(cons_a__U12(x_1)) -> a__U12(encArg(x_1)) encArg(cons_a__isNePal(x_1)) -> a__isNePal(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a____(x_1, x_2) -> a____(encArg(x_1), encArg(x_2)) encode___(x_1, x_2) -> __(encArg(x_1), encArg(x_2)) encode_mark(x_1) -> mark(encArg(x_1)) encode_nil -> nil encode_a__U11(x_1) -> a__U11(encArg(x_1)) encode_tt -> tt encode_a__U12(x_1) -> a__U12(encArg(x_1)) encode_a__isNePal(x_1) -> a__isNePal(encArg(x_1)) encode_U11(x_1) -> U11(encArg(x_1)) encode_U12(x_1) -> U12(encArg(x_1)) encode_isNePal(x_1) -> isNePal(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence mark(U12(X)) ->^+ a__U12(mark(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / U12(X)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a____(__(X, Y), Z) -> a____(mark(X), a____(mark(Y), mark(Z))) a____(X, nil) -> mark(X) a____(nil, X) -> mark(X) a__U11(tt) -> a__U12(tt) a__U12(tt) -> tt a__isNePal(__(I, __(P, I))) -> a__U11(tt) mark(__(X1, X2)) -> a____(mark(X1), mark(X2)) mark(U11(X)) -> a__U11(mark(X)) mark(U12(X)) -> a__U12(mark(X)) mark(isNePal(X)) -> a__isNePal(mark(X)) mark(nil) -> nil mark(tt) -> tt a____(X1, X2) -> __(X1, X2) a__U11(X) -> U11(X) a__U12(X) -> U12(X) a__isNePal(X) -> isNePal(X) The (relative) TRS S consists of the following rules: encArg(__(x_1, x_2)) -> __(encArg(x_1), encArg(x_2)) encArg(nil) -> nil encArg(tt) -> tt encArg(U11(x_1)) -> U11(encArg(x_1)) encArg(U12(x_1)) -> U12(encArg(x_1)) encArg(isNePal(x_1)) -> isNePal(encArg(x_1)) encArg(cons_a____(x_1, x_2)) -> a____(encArg(x_1), encArg(x_2)) encArg(cons_a__U11(x_1)) -> a__U11(encArg(x_1)) encArg(cons_a__U12(x_1)) -> a__U12(encArg(x_1)) encArg(cons_a__isNePal(x_1)) -> a__isNePal(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a____(x_1, x_2) -> a____(encArg(x_1), encArg(x_2)) encode___(x_1, x_2) -> __(encArg(x_1), encArg(x_2)) encode_mark(x_1) -> mark(encArg(x_1)) encode_nil -> nil encode_a__U11(x_1) -> a__U11(encArg(x_1)) encode_tt -> tt encode_a__U12(x_1) -> a__U12(encArg(x_1)) encode_a__isNePal(x_1) -> a__isNePal(encArg(x_1)) encode_U11(x_1) -> U11(encArg(x_1)) encode_U12(x_1) -> U12(encArg(x_1)) encode_isNePal(x_1) -> isNePal(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a____(__(X, Y), Z) -> a____(mark(X), a____(mark(Y), mark(Z))) a____(X, nil) -> mark(X) a____(nil, X) -> mark(X) a__U11(tt) -> a__U12(tt) a__U12(tt) -> tt a__isNePal(__(I, __(P, I))) -> a__U11(tt) mark(__(X1, X2)) -> a____(mark(X1), mark(X2)) mark(U11(X)) -> a__U11(mark(X)) mark(U12(X)) -> a__U12(mark(X)) mark(isNePal(X)) -> a__isNePal(mark(X)) mark(nil) -> nil mark(tt) -> tt a____(X1, X2) -> __(X1, X2) a__U11(X) -> U11(X) a__U12(X) -> U12(X) a__isNePal(X) -> isNePal(X) The (relative) TRS S consists of the following rules: encArg(__(x_1, x_2)) -> __(encArg(x_1), encArg(x_2)) encArg(nil) -> nil encArg(tt) -> tt encArg(U11(x_1)) -> U11(encArg(x_1)) encArg(U12(x_1)) -> U12(encArg(x_1)) encArg(isNePal(x_1)) -> isNePal(encArg(x_1)) encArg(cons_a____(x_1, x_2)) -> a____(encArg(x_1), encArg(x_2)) encArg(cons_a__U11(x_1)) -> a__U11(encArg(x_1)) encArg(cons_a__U12(x_1)) -> a__U12(encArg(x_1)) encArg(cons_a__isNePal(x_1)) -> a__isNePal(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a____(x_1, x_2) -> a____(encArg(x_1), encArg(x_2)) encode___(x_1, x_2) -> __(encArg(x_1), encArg(x_2)) encode_mark(x_1) -> mark(encArg(x_1)) encode_nil -> nil encode_a__U11(x_1) -> a__U11(encArg(x_1)) encode_tt -> tt encode_a__U12(x_1) -> a__U12(encArg(x_1)) encode_a__isNePal(x_1) -> a__isNePal(encArg(x_1)) encode_U11(x_1) -> U11(encArg(x_1)) encode_U12(x_1) -> U12(encArg(x_1)) encode_isNePal(x_1) -> isNePal(encArg(x_1)) Rewrite Strategy: FULL