/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 257 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__f(X) -> a__if(mark(X), c, f(true)) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) mark(f(X)) -> a__f(mark(X)) mark(if(X1, X2, X3)) -> a__if(mark(X1), mark(X2), X3) mark(c) -> c mark(true) -> true mark(false) -> false a__f(X) -> f(X) a__if(X1, X2, X3) -> if(X1, X2, X3) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(c) -> c encArg(f(x_1)) -> f(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_a__if(x_1, x_2, x_3)) -> a__if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1) -> a__f(encArg(x_1)) encode_a__if(x_1, x_2, x_3) -> a__if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_mark(x_1) -> mark(encArg(x_1)) encode_c -> c encode_f(x_1) -> f(encArg(x_1)) encode_true -> true encode_false -> false encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__f(X) -> a__if(mark(X), c, f(true)) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) mark(f(X)) -> a__f(mark(X)) mark(if(X1, X2, X3)) -> a__if(mark(X1), mark(X2), X3) mark(c) -> c mark(true) -> true mark(false) -> false a__f(X) -> f(X) a__if(X1, X2, X3) -> if(X1, X2, X3) The (relative) TRS S consists of the following rules: encArg(c) -> c encArg(f(x_1)) -> f(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_a__if(x_1, x_2, x_3)) -> a__if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1) -> a__f(encArg(x_1)) encode_a__if(x_1, x_2, x_3) -> a__if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_mark(x_1) -> mark(encArg(x_1)) encode_c -> c encode_f(x_1) -> f(encArg(x_1)) encode_true -> true encode_false -> false encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__f(X) -> a__if(mark(X), c, f(true)) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) mark(f(X)) -> a__f(mark(X)) mark(if(X1, X2, X3)) -> a__if(mark(X1), mark(X2), X3) mark(c) -> c mark(true) -> true mark(false) -> false a__f(X) -> f(X) a__if(X1, X2, X3) -> if(X1, X2, X3) The (relative) TRS S consists of the following rules: encArg(c) -> c encArg(f(x_1)) -> f(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_a__if(x_1, x_2, x_3)) -> a__if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1) -> a__f(encArg(x_1)) encode_a__if(x_1, x_2, x_3) -> a__if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_mark(x_1) -> mark(encArg(x_1)) encode_c -> c encode_f(x_1) -> f(encArg(x_1)) encode_true -> true encode_false -> false encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: FULL ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__f(X) -> a__if(mark(X), c, f(true)) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) mark(f(X)) -> a__f(mark(X)) mark(if(X1, X2, X3)) -> a__if(mark(X1), mark(X2), X3) mark(c) -> c mark(true) -> true mark(false) -> false a__f(X) -> f(X) a__if(X1, X2, X3) -> if(X1, X2, X3) The (relative) TRS S consists of the following rules: encArg(c) -> c encArg(f(x_1)) -> f(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_a__if(x_1, x_2, x_3)) -> a__if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1) -> a__f(encArg(x_1)) encode_a__if(x_1, x_2, x_3) -> a__if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_mark(x_1) -> mark(encArg(x_1)) encode_c -> c encode_f(x_1) -> f(encArg(x_1)) encode_true -> true encode_false -> false encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: FULL ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence mark(f(X)) ->^+ a__f(mark(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / f(X)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__f(X) -> a__if(mark(X), c, f(true)) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) mark(f(X)) -> a__f(mark(X)) mark(if(X1, X2, X3)) -> a__if(mark(X1), mark(X2), X3) mark(c) -> c mark(true) -> true mark(false) -> false a__f(X) -> f(X) a__if(X1, X2, X3) -> if(X1, X2, X3) The (relative) TRS S consists of the following rules: encArg(c) -> c encArg(f(x_1)) -> f(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_a__if(x_1, x_2, x_3)) -> a__if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1) -> a__f(encArg(x_1)) encode_a__if(x_1, x_2, x_3) -> a__if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_mark(x_1) -> mark(encArg(x_1)) encode_c -> c encode_f(x_1) -> f(encArg(x_1)) encode_true -> true encode_false -> false encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: FULL ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__f(X) -> a__if(mark(X), c, f(true)) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) mark(f(X)) -> a__f(mark(X)) mark(if(X1, X2, X3)) -> a__if(mark(X1), mark(X2), X3) mark(c) -> c mark(true) -> true mark(false) -> false a__f(X) -> f(X) a__if(X1, X2, X3) -> if(X1, X2, X3) The (relative) TRS S consists of the following rules: encArg(c) -> c encArg(f(x_1)) -> f(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_a__if(x_1, x_2, x_3)) -> a__if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__f(x_1) -> a__f(encArg(x_1)) encode_a__if(x_1, x_2, x_3) -> a__if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_mark(x_1) -> mark(encArg(x_1)) encode_c -> c encode_f(x_1) -> f(encArg(x_1)) encode_true -> true encode_false -> false encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: FULL