/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 185 ms] (4) CpxRelTRS (5) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] (6) CpxRelTRS (7) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxWeightedTrs (11) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedTrs (13) CompletionProof [UPPER BOUND(ID), 0 ms] (14) CpxTypedWeightedCompleteTrs (15) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) CompleteCoflocoProof [FINISHED, 732 ms] (18) BOUNDS(1, n^2) (19) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CpxRelTRS (21) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (22) typed CpxTrs (23) OrderProof [LOWER BOUND(ID), 0 ms] (24) typed CpxTrs (25) RewriteLemmaProof [LOWER BOUND(ID), 246 ms] (26) proven lower bound (27) LowerBoundPropagationProof [FINISHED, 0 ms] (28) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: __(__(X, Y), Z) -> __(X, __(Y, Z)) __(X, nil) -> X __(nil, X) -> X and(tt, X) -> activate(X) isNePal(__(I, __(P, I))) -> tt activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(nil) -> nil encArg(tt) -> tt encArg(cons___(x_1, x_2)) -> __(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_isNePal(x_1)) -> isNePal(encArg(x_1)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode___(x_1, x_2) -> __(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_activate(x_1) -> activate(encArg(x_1)) encode_isNePal(x_1) -> isNePal(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: __(__(X, Y), Z) -> __(X, __(Y, Z)) __(X, nil) -> X __(nil, X) -> X and(tt, X) -> activate(X) isNePal(__(I, __(P, I))) -> tt activate(X) -> X The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(tt) -> tt encArg(cons___(x_1, x_2)) -> __(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_isNePal(x_1)) -> isNePal(encArg(x_1)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode___(x_1, x_2) -> __(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_activate(x_1) -> activate(encArg(x_1)) encode_isNePal(x_1) -> isNePal(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: __(__(X, Y), Z) -> __(X, __(Y, Z)) __(X, nil) -> X __(nil, X) -> X and(tt, X) -> activate(X) isNePal(__(I, __(P, I))) -> tt activate(X) -> X The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(tt) -> tt encArg(cons___(x_1, x_2)) -> __(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_isNePal(x_1)) -> isNePal(encArg(x_1)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode___(x_1, x_2) -> __(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_activate(x_1) -> activate(encArg(x_1)) encode_isNePal(x_1) -> isNePal(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) NonCtorToCtorProof (UPPER BOUND(ID)) transformed non-ctor to ctor-system ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: __(X, nil) -> X __(nil, X) -> X and(tt, X) -> activate(X) activate(X) -> X __(c___(X, Y), Z) -> __(X, __(Y, Z)) isNePal(c___(I, c___(P, I))) -> tt The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(tt) -> tt encArg(cons___(x_1, x_2)) -> __(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_isNePal(x_1)) -> isNePal(encArg(x_1)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode___(x_1, x_2) -> __(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_activate(x_1) -> activate(encArg(x_1)) encode_isNePal(x_1) -> isNePal(encArg(x_1)) __(x0, x1) -> c___(x0, x1) Rewrite Strategy: FULL ---------------------------------------- (7) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS is a non-duplicating overlay system, we have rc = irc. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: __(X, nil) -> X __(nil, X) -> X and(tt, X) -> activate(X) activate(X) -> X __(c___(X, Y), Z) -> __(X, __(Y, Z)) isNePal(c___(I, c___(P, I))) -> tt The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(tt) -> tt encArg(cons___(x_1, x_2)) -> __(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_isNePal(x_1)) -> isNePal(encArg(x_1)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode___(x_1, x_2) -> __(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_activate(x_1) -> activate(encArg(x_1)) encode_isNePal(x_1) -> isNePal(encArg(x_1)) __(x0, x1) -> c___(x0, x1) Rewrite Strategy: INNERMOST ---------------------------------------- (9) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: __(X, nil) -> X [1] __(nil, X) -> X [1] and(tt, X) -> activate(X) [1] activate(X) -> X [1] __(c___(X, Y), Z) -> __(X, __(Y, Z)) [1] isNePal(c___(I, c___(P, I))) -> tt [1] encArg(nil) -> nil [0] encArg(tt) -> tt [0] encArg(cons___(x_1, x_2)) -> __(encArg(x_1), encArg(x_2)) [0] encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) [0] encArg(cons_isNePal(x_1)) -> isNePal(encArg(x_1)) [0] encArg(cons_activate(x_1)) -> activate(encArg(x_1)) [0] encode___(x_1, x_2) -> __(encArg(x_1), encArg(x_2)) [0] encode_nil -> nil [0] encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) [0] encode_tt -> tt [0] encode_activate(x_1) -> activate(encArg(x_1)) [0] encode_isNePal(x_1) -> isNePal(encArg(x_1)) [0] __(x0, x1) -> c___(x0, x1) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (11) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: __(X, nil) -> X [1] __(nil, X) -> X [1] and(tt, X) -> activate(X) [1] activate(X) -> X [1] __(c___(X, Y), Z) -> __(X, __(Y, Z)) [1] isNePal(c___(I, c___(P, I))) -> tt [1] encArg(nil) -> nil [0] encArg(tt) -> tt [0] encArg(cons___(x_1, x_2)) -> __(encArg(x_1), encArg(x_2)) [0] encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) [0] encArg(cons_isNePal(x_1)) -> isNePal(encArg(x_1)) [0] encArg(cons_activate(x_1)) -> activate(encArg(x_1)) [0] encode___(x_1, x_2) -> __(encArg(x_1), encArg(x_2)) [0] encode_nil -> nil [0] encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) [0] encode_tt -> tt [0] encode_activate(x_1) -> activate(encArg(x_1)) [0] encode_isNePal(x_1) -> isNePal(encArg(x_1)) [0] __(x0, x1) -> c___(x0, x1) [0] The TRS has the following type information: __ :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate nil :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate and :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate tt :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate activate :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate c___ :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate isNePal :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate encArg :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate cons___ :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate cons_and :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate cons_isNePal :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate cons_activate :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate encode___ :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate encode_nil :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate encode_and :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate encode_tt :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate encode_activate :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate encode_isNePal :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate Rewrite Strategy: INNERMOST ---------------------------------------- (13) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: encArg(v0) -> null_encArg [0] encode___(v0, v1) -> null_encode___ [0] encode_nil -> null_encode_nil [0] encode_and(v0, v1) -> null_encode_and [0] encode_tt -> null_encode_tt [0] encode_activate(v0) -> null_encode_activate [0] encode_isNePal(v0) -> null_encode_isNePal [0] __(v0, v1) -> null___ [0] and(v0, v1) -> null_and [0] isNePal(v0) -> null_isNePal [0] And the following fresh constants: null_encArg, null_encode___, null_encode_nil, null_encode_and, null_encode_tt, null_encode_activate, null_encode_isNePal, null___, null_and, null_isNePal ---------------------------------------- (14) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: __(X, nil) -> X [1] __(nil, X) -> X [1] and(tt, X) -> activate(X) [1] activate(X) -> X [1] __(c___(X, Y), Z) -> __(X, __(Y, Z)) [1] isNePal(c___(I, c___(P, I))) -> tt [1] encArg(nil) -> nil [0] encArg(tt) -> tt [0] encArg(cons___(x_1, x_2)) -> __(encArg(x_1), encArg(x_2)) [0] encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) [0] encArg(cons_isNePal(x_1)) -> isNePal(encArg(x_1)) [0] encArg(cons_activate(x_1)) -> activate(encArg(x_1)) [0] encode___(x_1, x_2) -> __(encArg(x_1), encArg(x_2)) [0] encode_nil -> nil [0] encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) [0] encode_tt -> tt [0] encode_activate(x_1) -> activate(encArg(x_1)) [0] encode_isNePal(x_1) -> isNePal(encArg(x_1)) [0] __(x0, x1) -> c___(x0, x1) [0] encArg(v0) -> null_encArg [0] encode___(v0, v1) -> null_encode___ [0] encode_nil -> null_encode_nil [0] encode_and(v0, v1) -> null_encode_and [0] encode_tt -> null_encode_tt [0] encode_activate(v0) -> null_encode_activate [0] encode_isNePal(v0) -> null_encode_isNePal [0] __(v0, v1) -> null___ [0] and(v0, v1) -> null_and [0] isNePal(v0) -> null_isNePal [0] The TRS has the following type information: __ :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal nil :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal and :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal tt :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal activate :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal c___ :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal isNePal :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal encArg :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal cons___ :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal cons_and :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal cons_isNePal :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal cons_activate :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal encode___ :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal encode_nil :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal encode_and :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal encode_tt :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal encode_activate :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal encode_isNePal :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal -> nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal null_encArg :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal null_encode___ :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal null_encode_nil :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal null_encode_and :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal null_encode_tt :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal null_encode_activate :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal null_encode_isNePal :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal null___ :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal null_and :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal null_isNePal :: nil:tt:c___:cons___:cons_and:cons_isNePal:cons_activate:null_encArg:null_encode___:null_encode_nil:null_encode_and:null_encode_tt:null_encode_activate:null_encode_isNePal:null___:null_and:null_isNePal Rewrite Strategy: INNERMOST ---------------------------------------- (15) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: nil => 0 tt => 1 null_encArg => 0 null_encode___ => 0 null_encode_nil => 0 null_encode_and => 0 null_encode_tt => 0 null_encode_activate => 0 null_encode_isNePal => 0 null___ => 0 null_and => 0 null_isNePal => 0 ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: __(z, z') -{ 1 }-> X :|: X >= 0, z = X, z' = 0 __(z, z') -{ 1 }-> X :|: z' = X, X >= 0, z = 0 __(z, z') -{ 1 }-> __(X, __(Y, Z)) :|: Z >= 0, Y >= 0, z = 1 + X + Y, X >= 0, z' = Z __(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 __(z, z') -{ 0 }-> 1 + x0 + x1 :|: z = x0, x0 >= 0, x1 >= 0, z' = x1 activate(z) -{ 1 }-> X :|: X >= 0, z = X and(z, z') -{ 1 }-> activate(X) :|: z' = X, z = 1, X >= 0 and(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encArg(z) -{ 0 }-> isNePal(encArg(x_1)) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(encArg(x_1)) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> __(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode___(z, z') -{ 0 }-> __(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode___(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_activate(z) -{ 0 }-> activate(encArg(x_1)) :|: x_1 >= 0, z = x_1 encode_activate(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_and(z, z') -{ 0 }-> and(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_and(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_isNePal(z) -{ 0 }-> isNePal(encArg(x_1)) :|: x_1 >= 0, z = x_1 encode_isNePal(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_nil -{ 0 }-> 0 :|: encode_tt -{ 0 }-> 1 :|: encode_tt -{ 0 }-> 0 :|: isNePal(z) -{ 1 }-> 1 :|: z = 1 + I + (1 + P + I), I >= 0, P >= 0 isNePal(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (17) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V1, V),0,[fun(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V),0,[and(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V),0,[activate(V1, Out)],[V1 >= 0]). eq(start(V1, V),0,[isNePal(V1, Out)],[V1 >= 0]). eq(start(V1, V),0,[encArg(V1, Out)],[V1 >= 0]). eq(start(V1, V),0,[fun1(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V),0,[fun2(Out)],[]). eq(start(V1, V),0,[fun3(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V),0,[fun4(Out)],[]). eq(start(V1, V),0,[fun5(V1, Out)],[V1 >= 0]). eq(start(V1, V),0,[fun6(V1, Out)],[V1 >= 0]). eq(fun(V1, V, Out),1,[],[Out = X1,X1 >= 0,V1 = X1,V = 0]). eq(fun(V1, V, Out),1,[],[Out = X2,V = X2,X2 >= 0,V1 = 0]). eq(and(V1, V, Out),1,[activate(X3, Ret)],[Out = Ret,V = X3,V1 = 1,X3 >= 0]). eq(activate(V1, Out),1,[],[Out = X4,X4 >= 0,V1 = X4]). eq(fun(V1, V, Out),1,[fun(Y1, Z1, Ret1),fun(X5, Ret1, Ret2)],[Out = Ret2,Z1 >= 0,Y1 >= 0,V1 = 1 + X5 + Y1,X5 >= 0,V = Z1]). eq(isNePal(V1, Out),1,[],[Out = 1,V1 = 2 + 2*I1 + P1,I1 >= 0,P1 >= 0]). eq(encArg(V1, Out),0,[],[Out = 0,V1 = 0]). eq(encArg(V1, Out),0,[],[Out = 1,V1 = 1]). eq(encArg(V1, Out),0,[encArg(V3, Ret0),encArg(V2, Ret11),fun(Ret0, Ret11, Ret3)],[Out = Ret3,V3 >= 0,V1 = 1 + V2 + V3,V2 >= 0]). eq(encArg(V1, Out),0,[encArg(V4, Ret01),encArg(V5, Ret12),and(Ret01, Ret12, Ret4)],[Out = Ret4,V4 >= 0,V1 = 1 + V4 + V5,V5 >= 0]). eq(encArg(V1, Out),0,[encArg(V6, Ret02),isNePal(Ret02, Ret5)],[Out = Ret5,V1 = 1 + V6,V6 >= 0]). eq(encArg(V1, Out),0,[encArg(V7, Ret03),activate(Ret03, Ret6)],[Out = Ret6,V1 = 1 + V7,V7 >= 0]). eq(fun1(V1, V, Out),0,[encArg(V9, Ret04),encArg(V8, Ret13),fun(Ret04, Ret13, Ret7)],[Out = Ret7,V9 >= 0,V8 >= 0,V1 = V9,V = V8]). eq(fun2(Out),0,[],[Out = 0]). eq(fun3(V1, V, Out),0,[encArg(V11, Ret05),encArg(V10, Ret14),and(Ret05, Ret14, Ret8)],[Out = Ret8,V11 >= 0,V10 >= 0,V1 = V11,V = V10]). eq(fun4(Out),0,[],[Out = 1]). eq(fun5(V1, Out),0,[encArg(V12, Ret06),activate(Ret06, Ret9)],[Out = Ret9,V12 >= 0,V1 = V12]). eq(fun6(V1, Out),0,[encArg(V13, Ret07),isNePal(Ret07, Ret10)],[Out = Ret10,V13 >= 0,V1 = V13]). eq(fun(V1, V, Out),0,[],[Out = 1 + V14 + V15,V1 = V15,V15 >= 0,V14 >= 0,V = V14]). eq(encArg(V1, Out),0,[],[Out = 0,V16 >= 0,V1 = V16]). eq(fun1(V1, V, Out),0,[],[Out = 0,V18 >= 0,V17 >= 0,V1 = V18,V = V17]). eq(fun3(V1, V, Out),0,[],[Out = 0,V20 >= 0,V19 >= 0,V1 = V20,V = V19]). eq(fun4(Out),0,[],[Out = 0]). eq(fun5(V1, Out),0,[],[Out = 0,V21 >= 0,V1 = V21]). eq(fun6(V1, Out),0,[],[Out = 0,V22 >= 0,V1 = V22]). eq(fun(V1, V, Out),0,[],[Out = 0,V23 >= 0,V24 >= 0,V1 = V23,V = V24]). eq(and(V1, V, Out),0,[],[Out = 0,V25 >= 0,V26 >= 0,V1 = V25,V = V26]). eq(isNePal(V1, Out),0,[],[Out = 0,V27 >= 0,V1 = V27]). input_output_vars(fun(V1,V,Out),[V1,V],[Out]). input_output_vars(and(V1,V,Out),[V1,V],[Out]). input_output_vars(activate(V1,Out),[V1],[Out]). input_output_vars(isNePal(V1,Out),[V1],[Out]). input_output_vars(encArg(V1,Out),[V1],[Out]). input_output_vars(fun1(V1,V,Out),[V1,V],[Out]). input_output_vars(fun2(Out),[],[Out]). input_output_vars(fun3(V1,V,Out),[V1,V],[Out]). input_output_vars(fun4(Out),[],[Out]). input_output_vars(fun5(V1,Out),[V1],[Out]). input_output_vars(fun6(V1,Out),[V1],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. non_recursive : [activate/2] 1. non_recursive : [and/3] 2. recursive [multiple] : [fun/3] 3. non_recursive : [isNePal/2] 4. recursive [non_tail,multiple] : [encArg/2] 5. non_recursive : [fun1/3] 6. non_recursive : [fun2/1] 7. non_recursive : [fun3/3] 8. non_recursive : [fun4/1] 9. non_recursive : [fun5/2] 10. non_recursive : [fun6/2] 11. non_recursive : [start/2] #### Obtained direct recursion through partial evaluation 0. SCC is completely evaluated into other SCCs 1. SCC is partially evaluated into and/3 2. SCC is partially evaluated into fun/3 3. SCC is partially evaluated into isNePal/2 4. SCC is partially evaluated into encArg/2 5. SCC is partially evaluated into fun1/3 6. SCC is completely evaluated into other SCCs 7. SCC is partially evaluated into fun3/3 8. SCC is partially evaluated into fun4/1 9. SCC is partially evaluated into fun5/2 10. SCC is partially evaluated into fun6/2 11. SCC is partially evaluated into start/2 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations and/3 * CE 18 is refined into CE [37] * CE 17 is refined into CE [38] ### Cost equations --> "Loop" of and/3 * CEs [37] --> Loop 21 * CEs [38] --> Loop 22 ### Ranking functions of CR and(V1,V,Out) #### Partial ranking functions of CR and(V1,V,Out) ### Specialization of cost equations fun/3 * CE 15 is refined into CE [39] * CE 16 is refined into CE [40] * CE 12 is refined into CE [41] * CE 13 is refined into CE [42] * CE 14 is refined into CE [43] ### Cost equations --> "Loop" of fun/3 * CEs [43] --> Loop 23 * CEs [39] --> Loop 24 * CEs [40] --> Loop 25 * CEs [41] --> Loop 26 * CEs [42] --> Loop 27 ### Ranking functions of CR fun(V1,V,Out) * RF of phase [23]: [V1] #### Partial ranking functions of CR fun(V1,V,Out) * Partial RF of phase [23]: - RF of loop [23:1,23:2]: V1 ### Specialization of cost equations isNePal/2 * CE 19 is refined into CE [44] * CE 20 is refined into CE [45] ### Cost equations --> "Loop" of isNePal/2 * CEs [44] --> Loop 28 * CEs [45] --> Loop 29 ### Ranking functions of CR isNePal(V1,Out) #### Partial ranking functions of CR isNePal(V1,Out) ### Specialization of cost equations encArg/2 * CE 21 is refined into CE [46] * CE 22 is refined into CE [47] * CE 25 is refined into CE [48,49] * CE 26 is refined into CE [50] * CE 23 is refined into CE [51,52,53,54,55] * CE 24 is refined into CE [56,57] ### Cost equations --> "Loop" of encArg/2 * CEs [54] --> Loop 30 * CEs [52] --> Loop 31 * CEs [55,56] --> Loop 32 * CEs [51] --> Loop 33 * CEs [53,57] --> Loop 34 * CEs [50] --> Loop 35 * CEs [49] --> Loop 36 * CEs [48] --> Loop 37 * CEs [46] --> Loop 38 * CEs [47] --> Loop 39 ### Ranking functions of CR encArg(V1,Out) * RF of phase [30,31,32,33,34,35,36,37]: [V1] #### Partial ranking functions of CR encArg(V1,Out) * Partial RF of phase [30,31,32,33,34,35,36,37]: - RF of loop [30:1,30:2,31:1,31:2,32:1,32:2,33:1,33:2,34:1,34:2,35:1,36:1,37:1]: V1 ### Specialization of cost equations fun1/3 * CE 27 is refined into CE [58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75] * CE 28 is refined into CE [76] ### Cost equations --> "Loop" of fun1/3 * CEs [61,62] --> Loop 40 * CEs [59,64,66,67] --> Loop 41 * CEs [71] --> Loop 42 * CEs [58,68] --> Loop 43 * CEs [75] --> Loop 44 * CEs [60,63,65,69,70,72,73,74,76] --> Loop 45 ### Ranking functions of CR fun1(V1,V,Out) #### Partial ranking functions of CR fun1(V1,V,Out) ### Specialization of cost equations fun3/3 * CE 29 is refined into CE [77,78,79,80,81,82] * CE 30 is refined into CE [83] ### Cost equations --> "Loop" of fun3/3 * CEs [77] --> Loop 46 * CEs [78,79,80,81,82,83] --> Loop 47 ### Ranking functions of CR fun3(V1,V,Out) #### Partial ranking functions of CR fun3(V1,V,Out) ### Specialization of cost equations fun4/1 * CE 31 is refined into CE [84] * CE 32 is refined into CE [85] ### Cost equations --> "Loop" of fun4/1 * CEs [84] --> Loop 48 * CEs [85] --> Loop 49 ### Ranking functions of CR fun4(Out) #### Partial ranking functions of CR fun4(Out) ### Specialization of cost equations fun5/2 * CE 33 is refined into CE [86,87] * CE 34 is refined into CE [88] ### Cost equations --> "Loop" of fun5/2 * CEs [86] --> Loop 50 * CEs [87,88] --> Loop 51 ### Ranking functions of CR fun5(V1,Out) #### Partial ranking functions of CR fun5(V1,Out) ### Specialization of cost equations fun6/2 * CE 35 is refined into CE [89,90,91] * CE 36 is refined into CE [92] ### Cost equations --> "Loop" of fun6/2 * CEs [90] --> Loop 52 * CEs [89,91,92] --> Loop 53 ### Ranking functions of CR fun6(V1,Out) #### Partial ranking functions of CR fun6(V1,Out) ### Specialization of cost equations start/2 * CE 1 is refined into CE [93,94,95,96,97] * CE 2 is refined into CE [98,99] * CE 3 is refined into CE [100] * CE 4 is refined into CE [101,102] * CE 5 is refined into CE [103,104] * CE 6 is refined into CE [105,106,107,108,109,110] * CE 7 is refined into CE [111] * CE 8 is refined into CE [112,113] * CE 9 is refined into CE [114,115] * CE 10 is refined into CE [116,117] * CE 11 is refined into CE [118,119] ### Cost equations --> "Loop" of start/2 * CEs [93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119] --> Loop 54 ### Ranking functions of CR start(V1,V) #### Partial ranking functions of CR start(V1,V) Computing Bounds ===================================== #### Cost of chains of and(V1,V,Out): * Chain [22]: 2 with precondition: [V1=1,V=Out,V>=0] * Chain [21]: 0 with precondition: [Out=0,V1>=0,V>=0] #### Cost of chains of fun(V1,V,Out): * Chain [27]: 1 with precondition: [V1=0,V=Out,V>=0] * Chain [26]: 1 with precondition: [V=0,V1=Out,V1>=0] * Chain [25]: 0 with precondition: [Out=0,V1>=0,V>=0] * Chain [24]: 0 with precondition: [V+V1+1=Out,V1>=0,V>=0] * Chain [multiple([23],[[27],[26],[25],[24]])]: 1*it(23)+2*it([26])+0 Such that:it(23) =< V1 aux(1) =< V1+1 it([26]) =< aux(1) with precondition: [V1>=1,V>=0,Out>=0,V+V1+1>=Out] #### Cost of chains of isNePal(V1,Out): * Chain [29]: 0 with precondition: [Out=0,V1>=0] * Chain [28]: 1 with precondition: [Out=1,V1>=2] #### Cost of chains of encArg(V1,Out): * Chain [39]: 0 with precondition: [V1=1,Out=1] * Chain [38]: 0 with precondition: [Out=0,V1>=0] * Chain [multiple([30,31,32,33,34,35,36,37],[[39],[38]])]: 1*it(31)+5*it(32)+3*s(6)+0 Such that:aux(4) =< V1 aux(6) =< 2*V1+1 it(31) =< aux(4) it(32) =< aux(4) it(32) =< aux(6) s(7) =< it(32)*aux(4) s(6) =< s(7) with precondition: [V1>=1,Out>=0,V1>=Out] #### Cost of chains of fun1(V1,V,Out): * Chain [45]: 3*s(16)+15*s(17)+9*s(19)+3*s(22)+15*s(23)+9*s(25)+1 Such that:aux(7) =< V1 aux(8) =< 2*V1+1 aux(9) =< V aux(10) =< 2*V+1 s(22) =< aux(9) s(23) =< aux(9) s(23) =< aux(10) s(24) =< s(23)*aux(9) s(25) =< s(24) s(16) =< aux(7) s(17) =< aux(7) s(17) =< aux(8) s(18) =< s(17)*aux(7) s(19) =< s(18) with precondition: [Out=0,V1>=0,V>=0] * Chain [44]: 0 with precondition: [Out=1,V1>=0,V>=0] * Chain [43]: 1*s(52)+5*s(53)+3*s(55)+2*s(58)+10*s(59)+6*s(61)+1 Such that:s(50) =< V1 s(51) =< 2*V1+1 aux(11) =< V aux(12) =< 2*V+1 s(58) =< aux(11) s(59) =< aux(11) s(59) =< aux(12) s(60) =< s(59)*aux(11) s(61) =< s(60) s(52) =< s(50) s(53) =< s(50) s(53) =< s(51) s(54) =< s(53)*s(50) s(55) =< s(54) with precondition: [V1>=0,V>=1,Out>=0,V>=Out] * Chain [42]: 1*s(70)+5*s(71)+3*s(73)+0 Such that:s(68) =< V s(69) =< 2*V+1 s(70) =< s(68) s(71) =< s(68) s(71) =< s(69) s(72) =< s(71)*s(68) s(73) =< s(72) with precondition: [V1>=0,V>=1,Out>=1,V+1>=Out] * Chain [41]: 5*s(76)+20*s(77)+12*s(79)+1*s(82)+5*s(83)+3*s(85)+2*s(106)+1 Such that:s(105) =< V1+1 s(80) =< V s(81) =< 2*V+1 aux(14) =< V1 aux(15) =< 2*V1+1 s(82) =< s(80) s(83) =< s(80) s(83) =< s(81) s(84) =< s(83)*s(80) s(85) =< s(84) s(76) =< aux(14) s(77) =< aux(14) s(77) =< aux(15) s(78) =< s(77)*aux(14) s(79) =< s(78) s(106) =< s(105) with precondition: [V1>=1,V>=0,Out>=0,V1+1>=Out] * Chain [40]: 3*s(109)+10*s(110)+6*s(112)+2*s(115)+10*s(116)+6*s(118)+2*s(133)+0 Such that:s(132) =< V1+1 aux(17) =< V1 aux(18) =< 2*V1+1 aux(19) =< V aux(20) =< 2*V+1 s(115) =< aux(19) s(116) =< aux(19) s(116) =< aux(20) s(117) =< s(116)*aux(19) s(118) =< s(117) s(109) =< aux(17) s(110) =< aux(17) s(110) =< aux(18) s(111) =< s(110)*aux(17) s(112) =< s(111) s(133) =< s(132) with precondition: [V1>=1,V>=1,Out>=0,V+V1+1>=Out] #### Cost of chains of fun3(V1,V,Out): * Chain [47]: 3*s(136)+15*s(137)+9*s(139)+2*s(142)+10*s(143)+6*s(145)+2 Such that:aux(21) =< V1 aux(22) =< 2*V1+1 aux(23) =< V aux(24) =< 2*V+1 s(142) =< aux(23) s(143) =< aux(23) s(143) =< aux(24) s(144) =< s(143)*aux(23) s(145) =< s(144) s(136) =< aux(21) s(137) =< aux(21) s(137) =< aux(22) s(138) =< s(137)*aux(21) s(139) =< s(138) with precondition: [Out=0,V1>=0,V>=0] * Chain [46]: 1*s(166)+5*s(167)+3*s(169)+1*s(172)+5*s(173)+3*s(175)+2 Such that:s(164) =< V1 s(165) =< 2*V1+1 s(170) =< V s(171) =< 2*V+1 s(172) =< s(170) s(173) =< s(170) s(173) =< s(171) s(174) =< s(173)*s(170) s(175) =< s(174) s(166) =< s(164) s(167) =< s(164) s(167) =< s(165) s(168) =< s(167)*s(164) s(169) =< s(168) with precondition: [V1>=1,V>=1,Out>=0,V>=Out] #### Cost of chains of fun4(Out): * Chain [49]: 0 with precondition: [Out=0] * Chain [48]: 0 with precondition: [Out=1] #### Cost of chains of fun5(V1,Out): * Chain [51]: 1 with precondition: [Out=0,V1>=0] * Chain [50]: 1*s(178)+5*s(179)+3*s(181)+1 Such that:s(176) =< V1 s(177) =< 2*V1+1 s(178) =< s(176) s(179) =< s(176) s(179) =< s(177) s(180) =< s(179)*s(176) s(181) =< s(180) with precondition: [V1>=1,Out>=0,V1>=Out] #### Cost of chains of fun6(V1,Out): * Chain [53]: 1*s(184)+5*s(185)+3*s(187)+0 Such that:s(182) =< V1 s(183) =< 2*V1+1 s(184) =< s(182) s(185) =< s(182) s(185) =< s(183) s(186) =< s(185)*s(182) s(187) =< s(186) with precondition: [Out=0,V1>=0] * Chain [52]: 1*s(190)+5*s(191)+3*s(193)+1 Such that:s(188) =< V1 s(189) =< 2*V1+1 s(190) =< s(188) s(191) =< s(188) s(191) =< s(189) s(192) =< s(191)*s(188) s(193) =< s(192) with precondition: [Out=1,V1>=2] #### Cost of chains of start(V1,V): * Chain [54]: 21*s(194)+6*s(196)+90*s(200)+54*s(202)+12*s(207)+60*s(208)+36*s(210)+2 Such that:aux(25) =< V1 aux(26) =< V1+1 aux(27) =< 2*V1+1 aux(28) =< V aux(29) =< 2*V+1 s(194) =< aux(25) s(196) =< aux(26) s(200) =< aux(25) s(200) =< aux(27) s(201) =< s(200)*aux(25) s(202) =< s(201) s(207) =< aux(28) s(208) =< aux(28) s(208) =< aux(29) s(209) =< s(208)*aux(28) s(210) =< s(209) with precondition: [] Closed-form bounds of start(V1,V): ------------------------------------- * Chain [54] with precondition: [] - Upper bound: nat(V1)*111+2+nat(V1)*54*nat(V1)+nat(V)*72+nat(V)*36*nat(V)+nat(V1+1)*6 - Complexity: n^2 ### Maximum cost of start(V1,V): nat(V1)*111+2+nat(V1)*54*nat(V1)+nat(V)*72+nat(V)*36*nat(V)+nat(V1+1)*6 Asymptotic class: n^2 * Total analysis performed in 614 ms. ---------------------------------------- (18) BOUNDS(1, n^2) ---------------------------------------- (19) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (20) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: __(__(X, Y), Z) -> __(X, __(Y, Z)) __(X, nil) -> X __(nil, X) -> X and(tt, X) -> activate(X) isNePal(__(I, __(P, I))) -> tt activate(X) -> X The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(tt) -> tt encArg(cons___(x_1, x_2)) -> __(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_isNePal(x_1)) -> isNePal(encArg(x_1)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode___(x_1, x_2) -> __(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_activate(x_1) -> activate(encArg(x_1)) encode_isNePal(x_1) -> isNePal(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (21) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (22) Obligation: TRS: Rules: __(__(X, Y), Z) -> __(X, __(Y, Z)) __(X, nil) -> X __(nil, X) -> X and(tt, X) -> activate(X) isNePal(__(I, __(P, I))) -> tt activate(X) -> X encArg(nil) -> nil encArg(tt) -> tt encArg(cons___(x_1, x_2)) -> __(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_isNePal(x_1)) -> isNePal(encArg(x_1)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode___(x_1, x_2) -> __(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_activate(x_1) -> activate(encArg(x_1)) encode_isNePal(x_1) -> isNePal(encArg(x_1)) Types: __ :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate nil :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate and :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate tt :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate activate :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate isNePal :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate encArg :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate cons___ :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate cons_and :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate cons_isNePal :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate cons_activate :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate encode___ :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate encode_nil :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate encode_and :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate encode_tt :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate encode_activate :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate encode_isNePal :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate hole_nil:tt:cons___:cons_and:cons_isNePal:cons_activate1_0 :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate gen_nil:tt:cons___:cons_and:cons_isNePal:cons_activate2_0 :: Nat -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate ---------------------------------------- (23) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: __, encArg They will be analysed ascendingly in the following order: __ < encArg ---------------------------------------- (24) Obligation: TRS: Rules: __(__(X, Y), Z) -> __(X, __(Y, Z)) __(X, nil) -> X __(nil, X) -> X and(tt, X) -> activate(X) isNePal(__(I, __(P, I))) -> tt activate(X) -> X encArg(nil) -> nil encArg(tt) -> tt encArg(cons___(x_1, x_2)) -> __(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_isNePal(x_1)) -> isNePal(encArg(x_1)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode___(x_1, x_2) -> __(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_activate(x_1) -> activate(encArg(x_1)) encode_isNePal(x_1) -> isNePal(encArg(x_1)) Types: __ :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate nil :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate and :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate tt :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate activate :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate isNePal :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate encArg :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate cons___ :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate cons_and :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate cons_isNePal :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate cons_activate :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate encode___ :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate encode_nil :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate encode_and :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate encode_tt :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate encode_activate :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate encode_isNePal :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate hole_nil:tt:cons___:cons_and:cons_isNePal:cons_activate1_0 :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate gen_nil:tt:cons___:cons_and:cons_isNePal:cons_activate2_0 :: Nat -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate Generator Equations: gen_nil:tt:cons___:cons_and:cons_isNePal:cons_activate2_0(0) <=> nil gen_nil:tt:cons___:cons_and:cons_isNePal:cons_activate2_0(+(x, 1)) <=> cons___(nil, gen_nil:tt:cons___:cons_and:cons_isNePal:cons_activate2_0(x)) The following defined symbols remain to be analysed: __, encArg They will be analysed ascendingly in the following order: __ < encArg ---------------------------------------- (25) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_nil:tt:cons___:cons_and:cons_isNePal:cons_activate2_0(n15_0)) -> gen_nil:tt:cons___:cons_and:cons_isNePal:cons_activate2_0(0), rt in Omega(n15_0) Induction Base: encArg(gen_nil:tt:cons___:cons_and:cons_isNePal:cons_activate2_0(0)) ->_R^Omega(0) nil Induction Step: encArg(gen_nil:tt:cons___:cons_and:cons_isNePal:cons_activate2_0(+(n15_0, 1))) ->_R^Omega(0) __(encArg(nil), encArg(gen_nil:tt:cons___:cons_and:cons_isNePal:cons_activate2_0(n15_0))) ->_R^Omega(0) __(nil, encArg(gen_nil:tt:cons___:cons_and:cons_isNePal:cons_activate2_0(n15_0))) ->_IH __(nil, gen_nil:tt:cons___:cons_and:cons_isNePal:cons_activate2_0(0)) ->_R^Omega(1) nil We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (26) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: __(__(X, Y), Z) -> __(X, __(Y, Z)) __(X, nil) -> X __(nil, X) -> X and(tt, X) -> activate(X) isNePal(__(I, __(P, I))) -> tt activate(X) -> X encArg(nil) -> nil encArg(tt) -> tt encArg(cons___(x_1, x_2)) -> __(encArg(x_1), encArg(x_2)) encArg(cons_and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_isNePal(x_1)) -> isNePal(encArg(x_1)) encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode___(x_1, x_2) -> __(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) encode_tt -> tt encode_activate(x_1) -> activate(encArg(x_1)) encode_isNePal(x_1) -> isNePal(encArg(x_1)) Types: __ :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate nil :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate and :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate tt :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate activate :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate isNePal :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate encArg :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate cons___ :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate cons_and :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate cons_isNePal :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate cons_activate :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate encode___ :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate encode_nil :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate encode_and :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate encode_tt :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate encode_activate :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate encode_isNePal :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate hole_nil:tt:cons___:cons_and:cons_isNePal:cons_activate1_0 :: nil:tt:cons___:cons_and:cons_isNePal:cons_activate gen_nil:tt:cons___:cons_and:cons_isNePal:cons_activate2_0 :: Nat -> nil:tt:cons___:cons_and:cons_isNePal:cons_activate Generator Equations: gen_nil:tt:cons___:cons_and:cons_isNePal:cons_activate2_0(0) <=> nil gen_nil:tt:cons___:cons_and:cons_isNePal:cons_activate2_0(+(x, 1)) <=> cons___(nil, gen_nil:tt:cons___:cons_and:cons_isNePal:cons_activate2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (27) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (28) BOUNDS(n^1, INF)