/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 44 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsProof [FINISHED, 0 ms] (8) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a__c -> a__f(g(c)) a__f(g(X)) -> g(X) mark(c) -> a__c mark(f(X)) -> a__f(X) mark(g(X)) -> g(X) a__c -> c a__f(X) -> f(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(g(x_1)) -> g(encArg(x_1)) encArg(c) -> c encArg(f(x_1)) -> f(encArg(x_1)) encArg(cons_a__c) -> a__c encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__c -> a__c encode_a__f(x_1) -> a__f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_c -> c encode_mark(x_1) -> mark(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a__c -> a__f(g(c)) a__f(g(X)) -> g(X) mark(c) -> a__c mark(f(X)) -> a__f(X) mark(g(X)) -> g(X) a__c -> c a__f(X) -> f(X) The (relative) TRS S consists of the following rules: encArg(g(x_1)) -> g(encArg(x_1)) encArg(c) -> c encArg(f(x_1)) -> f(encArg(x_1)) encArg(cons_a__c) -> a__c encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__c -> a__c encode_a__f(x_1) -> a__f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_c -> c encode_mark(x_1) -> mark(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a__c -> a__f(g(c)) a__f(g(X)) -> g(X) mark(c) -> a__c mark(f(X)) -> a__f(X) mark(g(X)) -> g(X) a__c -> c a__f(X) -> f(X) The (relative) TRS S consists of the following rules: encArg(g(x_1)) -> g(encArg(x_1)) encArg(c) -> c encArg(f(x_1)) -> f(encArg(x_1)) encArg(cons_a__c) -> a__c encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__c -> a__c encode_a__f(x_1) -> a__f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_c -> c encode_mark(x_1) -> mark(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a__c -> a__f(g(c)) a__f(g(X)) -> g(X) mark(c) -> a__c mark(f(X)) -> a__f(X) mark(g(X)) -> g(X) a__c -> c a__f(X) -> f(X) encArg(g(x_1)) -> g(encArg(x_1)) encArg(c) -> c encArg(f(x_1)) -> f(encArg(x_1)) encArg(cons_a__c) -> a__c encArg(cons_a__f(x_1)) -> a__f(encArg(x_1)) encArg(cons_mark(x_1)) -> mark(encArg(x_1)) encode_a__c -> a__c encode_a__f(x_1) -> a__f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_c -> c encode_mark(x_1) -> mark(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) CpxTrsMatchBoundsProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 4. The certificate found is represented by the following graph. "[22, 24, 27, 28, 29, 30, 31, 32, 33] {(22,24,[a__c|0, a__f_1|0, mark_1|0, encArg_1|0, encode_a__c|0, encode_a__f_1|0, encode_g_1|0, encode_c|0, encode_mark_1|0, encode_f_1|0, c|1, f_1|1, g_1|1, a__c|1, a__f_1|1, c|2, f_1|2, a__c|2, c|3]), (22,27,[a__f_1|1, f_1|2]), (22,29,[g_1|1, f_1|1, a__f_1|1, mark_1|1, f_1|2, g_1|2, a__f_1|2, f_1|3, g_1|3]), (22,30,[a__f_1|2, f_1|3]), (22,28,[g_1|2]), (22,31,[g_1|3, g_1|2]), (22,32,[a__f_1|3, f_1|4, a__f_1|2, f_1|3]), (22,33,[g_1|4, g_1|2, g_1|3]), (24,24,[g_1|0, c|0, f_1|0, cons_a__c|0, cons_a__f_1|0, cons_mark_1|0]), (27,28,[g_1|1]), (28,24,[c|1]), (29,24,[encArg_1|1, c|1, a__c|1, c|2, a__c|2, c|3]), (29,29,[g_1|1, f_1|1, a__f_1|1, mark_1|1, f_1|2, g_1|2, a__f_1|2, f_1|3, g_1|3]), (29,30,[a__f_1|2, f_1|3]), (29,32,[a__f_1|3, f_1|4, a__f_1|2, f_1|3]), (29,31,[g_1|3, g_1|2]), (29,33,[g_1|4, g_1|2, g_1|3]), (30,31,[g_1|2]), (31,24,[c|2]), (32,33,[g_1|3]), (33,24,[c|3])}" ---------------------------------------- (8) BOUNDS(1, n^1)