/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 42 ms] (4) CpxRelTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 85 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 4 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 448 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 173 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 642 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 375 ms] (36) CpxRNTS (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 287 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 36 ms] (42) CpxRNTS (43) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 322 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 5 ms] (48) CpxRNTS (49) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 136 ms] (52) CpxRNTS (53) IntTrsBoundProof [UPPER BOUND(ID), 3 ms] (54) CpxRNTS (55) FinalProof [FINISHED, 0 ms] (56) BOUNDS(1, n^2) (57) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (58) CpxRelTRS (59) TypeInferenceProof [BOTH BOUNDS(ID, ID), 1 ms] (60) typed CpxTrs (61) OrderProof [LOWER BOUND(ID), 0 ms] (62) typed CpxTrs (63) RewriteLemmaProof [LOWER BOUND(ID), 271 ms] (64) BEST (65) proven lower bound (66) LowerBoundPropagationProof [FINISHED, 0 ms] (67) BOUNDS(n^1, INF) (68) typed CpxTrs (69) RewriteLemmaProof [LOWER BOUND(ID), 86 ms] (70) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: g(s(x)) -> f(x) f(0) -> s(0) f(s(x)) -> s(s(g(x))) g(0) -> 0 S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0 ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: g(s(x)) -> f(x) f(0) -> s(0) f(s(x)) -> s(s(g(x))) g(0) -> 0 The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0 Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: g(s(x)) -> f(x) f(0) -> s(0) f(s(x)) -> s(s(g(x))) g(0) -> 0 The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0 Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: g(s(x)) -> f(x) [1] f(0) -> s(0) [1] f(s(x)) -> s(s(g(x))) [1] g(0) -> 0 [1] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(0) -> 0 [0] encArg(cons_g(x_1)) -> g(encArg(x_1)) [0] encArg(cons_f(x_1)) -> f(encArg(x_1)) [0] encode_g(x_1) -> g(encArg(x_1)) [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_f(x_1) -> f(encArg(x_1)) [0] encode_0 -> 0 [0] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: g(s(x)) -> f(x) [1] f(0) -> s(0) [1] f(s(x)) -> s(s(g(x))) [1] g(0) -> 0 [1] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(0) -> 0 [0] encArg(cons_g(x_1)) -> g(encArg(x_1)) [0] encArg(cons_f(x_1)) -> f(encArg(x_1)) [0] encode_g(x_1) -> g(encArg(x_1)) [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_f(x_1) -> f(encArg(x_1)) [0] encode_0 -> 0 [0] The TRS has the following type information: g :: s:0:cons_g:cons_f -> s:0:cons_g:cons_f s :: s:0:cons_g:cons_f -> s:0:cons_g:cons_f f :: s:0:cons_g:cons_f -> s:0:cons_g:cons_f 0 :: s:0:cons_g:cons_f encArg :: s:0:cons_g:cons_f -> s:0:cons_g:cons_f cons_g :: s:0:cons_g:cons_f -> s:0:cons_g:cons_f cons_f :: s:0:cons_g:cons_f -> s:0:cons_g:cons_f encode_g :: s:0:cons_g:cons_f -> s:0:cons_g:cons_f encode_s :: s:0:cons_g:cons_f -> s:0:cons_g:cons_f encode_f :: s:0:cons_g:cons_f -> s:0:cons_g:cons_f encode_0 :: s:0:cons_g:cons_f Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: g_1 f_1 encArg_1 encode_g_1 encode_s_1 encode_f_1 encode_0 Due to the following rules being added: encArg(v0) -> 0 [0] encode_g(v0) -> 0 [0] encode_s(v0) -> 0 [0] encode_f(v0) -> 0 [0] encode_0 -> 0 [0] g(v0) -> 0 [0] f(v0) -> 0 [0] And the following fresh constants: none ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: g(s(x)) -> f(x) [1] f(0) -> s(0) [1] f(s(x)) -> s(s(g(x))) [1] g(0) -> 0 [1] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(0) -> 0 [0] encArg(cons_g(x_1)) -> g(encArg(x_1)) [0] encArg(cons_f(x_1)) -> f(encArg(x_1)) [0] encode_g(x_1) -> g(encArg(x_1)) [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_f(x_1) -> f(encArg(x_1)) [0] encode_0 -> 0 [0] encArg(v0) -> 0 [0] encode_g(v0) -> 0 [0] encode_s(v0) -> 0 [0] encode_f(v0) -> 0 [0] encode_0 -> 0 [0] g(v0) -> 0 [0] f(v0) -> 0 [0] The TRS has the following type information: g :: s:0:cons_g:cons_f -> s:0:cons_g:cons_f s :: s:0:cons_g:cons_f -> s:0:cons_g:cons_f f :: s:0:cons_g:cons_f -> s:0:cons_g:cons_f 0 :: s:0:cons_g:cons_f encArg :: s:0:cons_g:cons_f -> s:0:cons_g:cons_f cons_g :: s:0:cons_g:cons_f -> s:0:cons_g:cons_f cons_f :: s:0:cons_g:cons_f -> s:0:cons_g:cons_f encode_g :: s:0:cons_g:cons_f -> s:0:cons_g:cons_f encode_s :: s:0:cons_g:cons_f -> s:0:cons_g:cons_f encode_f :: s:0:cons_g:cons_f -> s:0:cons_g:cons_f encode_0 :: s:0:cons_g:cons_f Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: g(s(x)) -> f(x) [1] f(0) -> s(0) [1] f(s(x)) -> s(s(g(x))) [1] g(0) -> 0 [1] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(0) -> 0 [0] encArg(cons_g(s(x_1'))) -> g(s(encArg(x_1'))) [0] encArg(cons_g(0)) -> g(0) [0] encArg(cons_g(cons_g(x_1''))) -> g(g(encArg(x_1''))) [0] encArg(cons_g(cons_f(x_11))) -> g(f(encArg(x_11))) [0] encArg(cons_g(x_1)) -> g(0) [0] encArg(cons_f(s(x_12))) -> f(s(encArg(x_12))) [0] encArg(cons_f(0)) -> f(0) [0] encArg(cons_f(cons_g(x_13))) -> f(g(encArg(x_13))) [0] encArg(cons_f(cons_f(x_14))) -> f(f(encArg(x_14))) [0] encArg(cons_f(x_1)) -> f(0) [0] encode_g(s(x_15)) -> g(s(encArg(x_15))) [0] encode_g(0) -> g(0) [0] encode_g(cons_g(x_16)) -> g(g(encArg(x_16))) [0] encode_g(cons_f(x_17)) -> g(f(encArg(x_17))) [0] encode_g(x_1) -> g(0) [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_f(s(x_18)) -> f(s(encArg(x_18))) [0] encode_f(0) -> f(0) [0] encode_f(cons_g(x_19)) -> f(g(encArg(x_19))) [0] encode_f(cons_f(x_110)) -> f(f(encArg(x_110))) [0] encode_f(x_1) -> f(0) [0] encode_0 -> 0 [0] encArg(v0) -> 0 [0] encode_g(v0) -> 0 [0] encode_s(v0) -> 0 [0] encode_f(v0) -> 0 [0] encode_0 -> 0 [0] g(v0) -> 0 [0] f(v0) -> 0 [0] The TRS has the following type information: g :: s:0:cons_g:cons_f -> s:0:cons_g:cons_f s :: s:0:cons_g:cons_f -> s:0:cons_g:cons_f f :: s:0:cons_g:cons_f -> s:0:cons_g:cons_f 0 :: s:0:cons_g:cons_f encArg :: s:0:cons_g:cons_f -> s:0:cons_g:cons_f cons_g :: s:0:cons_g:cons_f -> s:0:cons_g:cons_f cons_f :: s:0:cons_g:cons_f -> s:0:cons_g:cons_f encode_g :: s:0:cons_g:cons_f -> s:0:cons_g:cons_f encode_s :: s:0:cons_g:cons_f -> s:0:cons_g:cons_f encode_f :: s:0:cons_g:cons_f -> s:0:cons_g:cons_f encode_0 :: s:0:cons_g:cons_f Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(x_1''))) :|: z = 1 + (1 + x_1''), x_1'' >= 0 encArg(z) -{ 0 }-> g(f(encArg(x_11))) :|: x_11 >= 0, z = 1 + (1 + x_11) encArg(z) -{ 0 }-> g(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> g(0) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> g(1 + encArg(x_1')) :|: z = 1 + (1 + x_1'), x_1' >= 0 encArg(z) -{ 0 }-> f(g(encArg(x_13))) :|: z = 1 + (1 + x_13), x_13 >= 0 encArg(z) -{ 0 }-> f(f(encArg(x_14))) :|: x_14 >= 0, z = 1 + (1 + x_14) encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(x_12)) :|: z = 1 + (1 + x_12), x_12 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) :|: z = 1 + x_1, x_1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(g(encArg(x_19))) :|: z = 1 + x_19, x_19 >= 0 encode_f(z) -{ 0 }-> f(f(encArg(x_110))) :|: z = 1 + x_110, x_110 >= 0 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: x_1 >= 0, z = x_1 encode_f(z) -{ 0 }-> f(1 + encArg(x_18)) :|: z = 1 + x_18, x_18 >= 0 encode_f(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_g(z) -{ 0 }-> g(g(encArg(x_16))) :|: z = 1 + x_16, x_16 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(x_17))) :|: x_17 >= 0, z = 1 + x_17 encode_g(z) -{ 0 }-> g(0) :|: z = 0 encode_g(z) -{ 0 }-> g(0) :|: x_1 >= 0, z = x_1 encode_g(z) -{ 0 }-> g(1 + encArg(x_15)) :|: x_15 >= 0, z = 1 + x_15 encode_g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_s(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_s(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 f(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 f(z) -{ 1 }-> 1 + 0 :|: z = 0 f(z) -{ 1 }-> 1 + (1 + g(x)) :|: x >= 0, z = 1 + x g(z) -{ 1 }-> f(x) :|: x >= 0, z = 1 + x g(z) -{ 1 }-> 0 :|: z = 0 g(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> g(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> g(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(g(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: z >= 0 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(0) :|: z = 0 encode_g(z) -{ 0 }-> g(0) :|: z >= 0 encode_g(z) -{ 0 }-> g(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> 1 + 0 :|: z = 0 f(z) -{ 1 }-> 1 + (1 + g(z - 1)) :|: z - 1 >= 0 g(z) -{ 1 }-> f(z - 1) :|: z - 1 >= 0 g(z) -{ 1 }-> 0 :|: z = 0 g(z) -{ 0 }-> 0 :|: z >= 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { encode_0 } { f, g } { encArg } { encode_f } { encode_g } { encode_s } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> g(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> g(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(g(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: z >= 0 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(0) :|: z = 0 encode_g(z) -{ 0 }-> g(0) :|: z >= 0 encode_g(z) -{ 0 }-> g(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> 1 + 0 :|: z = 0 f(z) -{ 1 }-> 1 + (1 + g(z - 1)) :|: z - 1 >= 0 g(z) -{ 1 }-> f(z - 1) :|: z - 1 >= 0 g(z) -{ 1 }-> 0 :|: z = 0 g(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_0}, {f,g}, {encArg}, {encode_f}, {encode_g}, {encode_s} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> g(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> g(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(g(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: z >= 0 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(0) :|: z = 0 encode_g(z) -{ 0 }-> g(0) :|: z >= 0 encode_g(z) -{ 0 }-> g(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> 1 + 0 :|: z = 0 f(z) -{ 1 }-> 1 + (1 + g(z - 1)) :|: z - 1 >= 0 g(z) -{ 1 }-> f(z - 1) :|: z - 1 >= 0 g(z) -{ 1 }-> 0 :|: z = 0 g(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_0}, {f,g}, {encArg}, {encode_f}, {encode_g}, {encode_s} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> g(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> g(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(g(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: z >= 0 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(0) :|: z = 0 encode_g(z) -{ 0 }-> g(0) :|: z >= 0 encode_g(z) -{ 0 }-> g(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> 1 + 0 :|: z = 0 f(z) -{ 1 }-> 1 + (1 + g(z - 1)) :|: z - 1 >= 0 g(z) -{ 1 }-> f(z - 1) :|: z - 1 >= 0 g(z) -{ 1 }-> 0 :|: z = 0 g(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_0}, {f,g}, {encArg}, {encode_f}, {encode_g}, {encode_s} Previous analysis results are: encode_0: runtime: ?, size: O(1) [0] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> g(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> g(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(g(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: z >= 0 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(0) :|: z = 0 encode_g(z) -{ 0 }-> g(0) :|: z >= 0 encode_g(z) -{ 0 }-> g(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> 1 + 0 :|: z = 0 f(z) -{ 1 }-> 1 + (1 + g(z - 1)) :|: z - 1 >= 0 g(z) -{ 1 }-> f(z - 1) :|: z - 1 >= 0 g(z) -{ 1 }-> 0 :|: z = 0 g(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {f,g}, {encArg}, {encode_f}, {encode_g}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> g(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> g(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(g(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: z >= 0 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(0) :|: z = 0 encode_g(z) -{ 0 }-> g(0) :|: z >= 0 encode_g(z) -{ 0 }-> g(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> 1 + 0 :|: z = 0 f(z) -{ 1 }-> 1 + (1 + g(z - 1)) :|: z - 1 >= 0 g(z) -{ 1 }-> f(z - 1) :|: z - 1 >= 0 g(z) -{ 1 }-> 0 :|: z = 0 g(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {f,g}, {encArg}, {encode_f}, {encode_g}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z Computed SIZE bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> g(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> g(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(g(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: z >= 0 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(0) :|: z = 0 encode_g(z) -{ 0 }-> g(0) :|: z >= 0 encode_g(z) -{ 0 }-> g(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> 1 + 0 :|: z = 0 f(z) -{ 1 }-> 1 + (1 + g(z - 1)) :|: z - 1 >= 0 g(z) -{ 1 }-> f(z - 1) :|: z - 1 >= 0 g(z) -{ 1 }-> 0 :|: z = 0 g(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {f,g}, {encArg}, {encode_f}, {encode_g}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: ?, size: O(n^1) [1 + z] g: runtime: ?, size: O(n^1) [z] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + 2*z Computed RUNTIME bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 2*z ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> g(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> g(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> f(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z) -{ 0 }-> f(g(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(0) :|: z = 0 encode_f(z) -{ 0 }-> f(0) :|: z >= 0 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(0) :|: z = 0 encode_g(z) -{ 0 }-> g(0) :|: z >= 0 encode_g(z) -{ 0 }-> g(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> 1 + 0 :|: z = 0 f(z) -{ 1 }-> 1 + (1 + g(z - 1)) :|: z - 1 >= 0 g(z) -{ 1 }-> f(z - 1) :|: z - 1 >= 0 g(z) -{ 1 }-> 0 :|: z = 0 g(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encArg}, {encode_f}, {encode_g}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [2 + 2*z], size: O(n^1) [1 + z] g: runtime: O(n^1) [1 + 2*z], size: O(n^1) [z] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z - 1 >= 0 encArg(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 1, z = 1 + 0 encArg(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z) -{ 2 }-> s6 :|: s6 >= 0, s6 <= 0 + 1, z = 0 encode_f(z) -{ 2 }-> s7 :|: s7 >= 0, s7 <= 0 + 1, z >= 0 encode_f(z) -{ 0 }-> f(g(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 0 encode_g(z) -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> 1 + 0 :|: z = 0 f(z) -{ 2*z }-> 1 + (1 + s') :|: s' >= 0, s' <= z - 1, z - 1 >= 0 g(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= z - 1 + 1, z - 1 >= 0 g(z) -{ 1 }-> 0 :|: z = 0 g(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encArg}, {encode_f}, {encode_g}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [2 + 2*z], size: O(n^1) [1 + z] g: runtime: O(n^1) [1 + 2*z], size: O(n^1) [z] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z - 1 >= 0 encArg(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 1, z = 1 + 0 encArg(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z) -{ 2 }-> s6 :|: s6 >= 0, s6 <= 0 + 1, z = 0 encode_f(z) -{ 2 }-> s7 :|: s7 >= 0, s7 <= 0 + 1, z >= 0 encode_f(z) -{ 0 }-> f(g(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 0 encode_g(z) -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> 1 + 0 :|: z = 0 f(z) -{ 2*z }-> 1 + (1 + s') :|: s' >= 0, s' <= z - 1, z - 1 >= 0 g(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= z - 1 + 1, z - 1 >= 0 g(z) -{ 1 }-> 0 :|: z = 0 g(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encArg}, {encode_f}, {encode_g}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [2 + 2*z], size: O(n^1) [1 + z] g: runtime: O(n^1) [1 + 2*z], size: O(n^1) [z] encArg: runtime: ?, size: O(n^1) [z] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 6 + 20*z^2 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z - 1 >= 0 encArg(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 1, z = 1 + 0 encArg(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> g(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> g(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(g(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(f(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> f(1 + encArg(z - 2)) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z) -{ 2 }-> s6 :|: s6 >= 0, s6 <= 0 + 1, z = 0 encode_f(z) -{ 2 }-> s7 :|: s7 >= 0, s7 <= 0 + 1, z >= 0 encode_f(z) -{ 0 }-> f(g(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(f(encArg(z - 1))) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> f(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 0 encode_g(z) -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z >= 0 encode_g(z) -{ 0 }-> g(g(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(f(encArg(z - 1))) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> g(1 + encArg(z - 1)) :|: z - 1 >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> 1 + 0 :|: z = 0 f(z) -{ 2*z }-> 1 + (1 + s') :|: s' >= 0, s' <= z - 1, z - 1 >= 0 g(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= z - 1 + 1, z - 1 >= 0 g(z) -{ 1 }-> 0 :|: z = 0 g(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_f}, {encode_g}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [2 + 2*z], size: O(n^1) [1 + z] g: runtime: O(n^1) [1 + 2*z], size: O(n^1) [z] encArg: runtime: O(n^2) [6 + 20*z^2], size: O(n^1) [z] ---------------------------------------- (37) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z - 1 >= 0 encArg(z) -{ 89 + 2*s9 + -80*z + 20*z^2 }-> s10 :|: s9 >= 0, s9 <= z - 2, s10 >= 0, s10 <= 1 + s9, z - 2 >= 0 encArg(z) -{ 88 + 2*s11 + 2*s12 + -80*z + 20*z^2 }-> s13 :|: s11 >= 0, s11 <= z - 2, s12 >= 0, s12 <= s11, s13 >= 0, s13 <= s12, z - 2 >= 0 encArg(z) -{ 89 + 2*s14 + 2*s15 + -80*z + 20*z^2 }-> s16 :|: s14 >= 0, s14 <= z - 2, s15 >= 0, s15 <= s14 + 1, s16 >= 0, s16 <= s15, z - 2 >= 0 encArg(z) -{ 90 + 2*s17 + -80*z + 20*z^2 }-> s18 :|: s17 >= 0, s17 <= z - 2, s18 >= 0, s18 <= 1 + s17 + 1, z - 2 >= 0 encArg(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 1, z = 1 + 0 encArg(z) -{ 89 + 2*s19 + 2*s20 + -80*z + 20*z^2 }-> s21 :|: s19 >= 0, s19 <= z - 2, s20 >= 0, s20 <= s19, s21 >= 0, s21 <= s20 + 1, z - 2 >= 0 encArg(z) -{ 90 + 2*s22 + 2*s23 + -80*z + 20*z^2 }-> s24 :|: s22 >= 0, s22 <= z - 2, s23 >= 0, s23 <= s22 + 1, s24 >= 0, s24 <= s23 + 1, z - 2 >= 0 encArg(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 26 + -40*z + 20*z^2 }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z) -{ 30 + 2*s34 + -40*z + 20*z^2 }-> s35 :|: s34 >= 0, s34 <= z - 1, s35 >= 0, s35 <= 1 + s34 + 1, z - 1 >= 0 encode_f(z) -{ 29 + 2*s36 + 2*s37 + -40*z + 20*z^2 }-> s38 :|: s36 >= 0, s36 <= z - 1, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37 + 1, z - 1 >= 0 encode_f(z) -{ 30 + 2*s39 + 2*s40 + -40*z + 20*z^2 }-> s41 :|: s39 >= 0, s39 <= z - 1, s40 >= 0, s40 <= s39 + 1, s41 >= 0, s41 <= s40 + 1, z - 1 >= 0 encode_f(z) -{ 2 }-> s6 :|: s6 >= 0, s6 <= 0 + 1, z = 0 encode_f(z) -{ 2 }-> s7 :|: s7 >= 0, s7 <= 0 + 1, z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 29 + 2*s25 + -40*z + 20*z^2 }-> s26 :|: s25 >= 0, s25 <= z - 1, s26 >= 0, s26 <= 1 + s25, z - 1 >= 0 encode_g(z) -{ 28 + 2*s27 + 2*s28 + -40*z + 20*z^2 }-> s29 :|: s27 >= 0, s27 <= z - 1, s28 >= 0, s28 <= s27, s29 >= 0, s29 <= s28, z - 1 >= 0 encode_g(z) -{ 29 + 2*s30 + 2*s31 + -40*z + 20*z^2 }-> s32 :|: s30 >= 0, s30 <= z - 1, s31 >= 0, s31 <= s30 + 1, s32 >= 0, s32 <= s31, z - 1 >= 0 encode_g(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 0 encode_g(z) -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 6 + 20*z^2 }-> 1 + s33 :|: s33 >= 0, s33 <= z, z >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> 1 + 0 :|: z = 0 f(z) -{ 2*z }-> 1 + (1 + s') :|: s' >= 0, s' <= z - 1, z - 1 >= 0 g(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= z - 1 + 1, z - 1 >= 0 g(z) -{ 1 }-> 0 :|: z = 0 g(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_f}, {encode_g}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [2 + 2*z], size: O(n^1) [1 + z] g: runtime: O(n^1) [1 + 2*z], size: O(n^1) [z] encArg: runtime: O(n^2) [6 + 20*z^2], size: O(n^1) [z] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z - 1 >= 0 encArg(z) -{ 89 + 2*s9 + -80*z + 20*z^2 }-> s10 :|: s9 >= 0, s9 <= z - 2, s10 >= 0, s10 <= 1 + s9, z - 2 >= 0 encArg(z) -{ 88 + 2*s11 + 2*s12 + -80*z + 20*z^2 }-> s13 :|: s11 >= 0, s11 <= z - 2, s12 >= 0, s12 <= s11, s13 >= 0, s13 <= s12, z - 2 >= 0 encArg(z) -{ 89 + 2*s14 + 2*s15 + -80*z + 20*z^2 }-> s16 :|: s14 >= 0, s14 <= z - 2, s15 >= 0, s15 <= s14 + 1, s16 >= 0, s16 <= s15, z - 2 >= 0 encArg(z) -{ 90 + 2*s17 + -80*z + 20*z^2 }-> s18 :|: s17 >= 0, s17 <= z - 2, s18 >= 0, s18 <= 1 + s17 + 1, z - 2 >= 0 encArg(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 1, z = 1 + 0 encArg(z) -{ 89 + 2*s19 + 2*s20 + -80*z + 20*z^2 }-> s21 :|: s19 >= 0, s19 <= z - 2, s20 >= 0, s20 <= s19, s21 >= 0, s21 <= s20 + 1, z - 2 >= 0 encArg(z) -{ 90 + 2*s22 + 2*s23 + -80*z + 20*z^2 }-> s24 :|: s22 >= 0, s22 <= z - 2, s23 >= 0, s23 <= s22 + 1, s24 >= 0, s24 <= s23 + 1, z - 2 >= 0 encArg(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 26 + -40*z + 20*z^2 }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z) -{ 30 + 2*s34 + -40*z + 20*z^2 }-> s35 :|: s34 >= 0, s34 <= z - 1, s35 >= 0, s35 <= 1 + s34 + 1, z - 1 >= 0 encode_f(z) -{ 29 + 2*s36 + 2*s37 + -40*z + 20*z^2 }-> s38 :|: s36 >= 0, s36 <= z - 1, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37 + 1, z - 1 >= 0 encode_f(z) -{ 30 + 2*s39 + 2*s40 + -40*z + 20*z^2 }-> s41 :|: s39 >= 0, s39 <= z - 1, s40 >= 0, s40 <= s39 + 1, s41 >= 0, s41 <= s40 + 1, z - 1 >= 0 encode_f(z) -{ 2 }-> s6 :|: s6 >= 0, s6 <= 0 + 1, z = 0 encode_f(z) -{ 2 }-> s7 :|: s7 >= 0, s7 <= 0 + 1, z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 29 + 2*s25 + -40*z + 20*z^2 }-> s26 :|: s25 >= 0, s25 <= z - 1, s26 >= 0, s26 <= 1 + s25, z - 1 >= 0 encode_g(z) -{ 28 + 2*s27 + 2*s28 + -40*z + 20*z^2 }-> s29 :|: s27 >= 0, s27 <= z - 1, s28 >= 0, s28 <= s27, s29 >= 0, s29 <= s28, z - 1 >= 0 encode_g(z) -{ 29 + 2*s30 + 2*s31 + -40*z + 20*z^2 }-> s32 :|: s30 >= 0, s30 <= z - 1, s31 >= 0, s31 <= s30 + 1, s32 >= 0, s32 <= s31, z - 1 >= 0 encode_g(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 0 encode_g(z) -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 6 + 20*z^2 }-> 1 + s33 :|: s33 >= 0, s33 <= z, z >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> 1 + 0 :|: z = 0 f(z) -{ 2*z }-> 1 + (1 + s') :|: s' >= 0, s' <= z - 1, z - 1 >= 0 g(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= z - 1 + 1, z - 1 >= 0 g(z) -{ 1 }-> 0 :|: z = 0 g(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_f}, {encode_g}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [2 + 2*z], size: O(n^1) [1 + z] g: runtime: O(n^1) [1 + 2*z], size: O(n^1) [z] encArg: runtime: O(n^2) [6 + 20*z^2], size: O(n^1) [z] encode_f: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 93 + 60*z^2 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z - 1 >= 0 encArg(z) -{ 89 + 2*s9 + -80*z + 20*z^2 }-> s10 :|: s9 >= 0, s9 <= z - 2, s10 >= 0, s10 <= 1 + s9, z - 2 >= 0 encArg(z) -{ 88 + 2*s11 + 2*s12 + -80*z + 20*z^2 }-> s13 :|: s11 >= 0, s11 <= z - 2, s12 >= 0, s12 <= s11, s13 >= 0, s13 <= s12, z - 2 >= 0 encArg(z) -{ 89 + 2*s14 + 2*s15 + -80*z + 20*z^2 }-> s16 :|: s14 >= 0, s14 <= z - 2, s15 >= 0, s15 <= s14 + 1, s16 >= 0, s16 <= s15, z - 2 >= 0 encArg(z) -{ 90 + 2*s17 + -80*z + 20*z^2 }-> s18 :|: s17 >= 0, s17 <= z - 2, s18 >= 0, s18 <= 1 + s17 + 1, z - 2 >= 0 encArg(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 1, z = 1 + 0 encArg(z) -{ 89 + 2*s19 + 2*s20 + -80*z + 20*z^2 }-> s21 :|: s19 >= 0, s19 <= z - 2, s20 >= 0, s20 <= s19, s21 >= 0, s21 <= s20 + 1, z - 2 >= 0 encArg(z) -{ 90 + 2*s22 + 2*s23 + -80*z + 20*z^2 }-> s24 :|: s22 >= 0, s22 <= z - 2, s23 >= 0, s23 <= s22 + 1, s24 >= 0, s24 <= s23 + 1, z - 2 >= 0 encArg(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 26 + -40*z + 20*z^2 }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z) -{ 30 + 2*s34 + -40*z + 20*z^2 }-> s35 :|: s34 >= 0, s34 <= z - 1, s35 >= 0, s35 <= 1 + s34 + 1, z - 1 >= 0 encode_f(z) -{ 29 + 2*s36 + 2*s37 + -40*z + 20*z^2 }-> s38 :|: s36 >= 0, s36 <= z - 1, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37 + 1, z - 1 >= 0 encode_f(z) -{ 30 + 2*s39 + 2*s40 + -40*z + 20*z^2 }-> s41 :|: s39 >= 0, s39 <= z - 1, s40 >= 0, s40 <= s39 + 1, s41 >= 0, s41 <= s40 + 1, z - 1 >= 0 encode_f(z) -{ 2 }-> s6 :|: s6 >= 0, s6 <= 0 + 1, z = 0 encode_f(z) -{ 2 }-> s7 :|: s7 >= 0, s7 <= 0 + 1, z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 29 + 2*s25 + -40*z + 20*z^2 }-> s26 :|: s25 >= 0, s25 <= z - 1, s26 >= 0, s26 <= 1 + s25, z - 1 >= 0 encode_g(z) -{ 28 + 2*s27 + 2*s28 + -40*z + 20*z^2 }-> s29 :|: s27 >= 0, s27 <= z - 1, s28 >= 0, s28 <= s27, s29 >= 0, s29 <= s28, z - 1 >= 0 encode_g(z) -{ 29 + 2*s30 + 2*s31 + -40*z + 20*z^2 }-> s32 :|: s30 >= 0, s30 <= z - 1, s31 >= 0, s31 <= s30 + 1, s32 >= 0, s32 <= s31, z - 1 >= 0 encode_g(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 0 encode_g(z) -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 6 + 20*z^2 }-> 1 + s33 :|: s33 >= 0, s33 <= z, z >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> 1 + 0 :|: z = 0 f(z) -{ 2*z }-> 1 + (1 + s') :|: s' >= 0, s' <= z - 1, z - 1 >= 0 g(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= z - 1 + 1, z - 1 >= 0 g(z) -{ 1 }-> 0 :|: z = 0 g(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_g}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [2 + 2*z], size: O(n^1) [1 + z] g: runtime: O(n^1) [1 + 2*z], size: O(n^1) [z] encArg: runtime: O(n^2) [6 + 20*z^2], size: O(n^1) [z] encode_f: runtime: O(n^2) [93 + 60*z^2], size: O(n^1) [1 + z] ---------------------------------------- (43) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z - 1 >= 0 encArg(z) -{ 89 + 2*s9 + -80*z + 20*z^2 }-> s10 :|: s9 >= 0, s9 <= z - 2, s10 >= 0, s10 <= 1 + s9, z - 2 >= 0 encArg(z) -{ 88 + 2*s11 + 2*s12 + -80*z + 20*z^2 }-> s13 :|: s11 >= 0, s11 <= z - 2, s12 >= 0, s12 <= s11, s13 >= 0, s13 <= s12, z - 2 >= 0 encArg(z) -{ 89 + 2*s14 + 2*s15 + -80*z + 20*z^2 }-> s16 :|: s14 >= 0, s14 <= z - 2, s15 >= 0, s15 <= s14 + 1, s16 >= 0, s16 <= s15, z - 2 >= 0 encArg(z) -{ 90 + 2*s17 + -80*z + 20*z^2 }-> s18 :|: s17 >= 0, s17 <= z - 2, s18 >= 0, s18 <= 1 + s17 + 1, z - 2 >= 0 encArg(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 1, z = 1 + 0 encArg(z) -{ 89 + 2*s19 + 2*s20 + -80*z + 20*z^2 }-> s21 :|: s19 >= 0, s19 <= z - 2, s20 >= 0, s20 <= s19, s21 >= 0, s21 <= s20 + 1, z - 2 >= 0 encArg(z) -{ 90 + 2*s22 + 2*s23 + -80*z + 20*z^2 }-> s24 :|: s22 >= 0, s22 <= z - 2, s23 >= 0, s23 <= s22 + 1, s24 >= 0, s24 <= s23 + 1, z - 2 >= 0 encArg(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 26 + -40*z + 20*z^2 }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z) -{ 30 + 2*s34 + -40*z + 20*z^2 }-> s35 :|: s34 >= 0, s34 <= z - 1, s35 >= 0, s35 <= 1 + s34 + 1, z - 1 >= 0 encode_f(z) -{ 29 + 2*s36 + 2*s37 + -40*z + 20*z^2 }-> s38 :|: s36 >= 0, s36 <= z - 1, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37 + 1, z - 1 >= 0 encode_f(z) -{ 30 + 2*s39 + 2*s40 + -40*z + 20*z^2 }-> s41 :|: s39 >= 0, s39 <= z - 1, s40 >= 0, s40 <= s39 + 1, s41 >= 0, s41 <= s40 + 1, z - 1 >= 0 encode_f(z) -{ 2 }-> s6 :|: s6 >= 0, s6 <= 0 + 1, z = 0 encode_f(z) -{ 2 }-> s7 :|: s7 >= 0, s7 <= 0 + 1, z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 29 + 2*s25 + -40*z + 20*z^2 }-> s26 :|: s25 >= 0, s25 <= z - 1, s26 >= 0, s26 <= 1 + s25, z - 1 >= 0 encode_g(z) -{ 28 + 2*s27 + 2*s28 + -40*z + 20*z^2 }-> s29 :|: s27 >= 0, s27 <= z - 1, s28 >= 0, s28 <= s27, s29 >= 0, s29 <= s28, z - 1 >= 0 encode_g(z) -{ 29 + 2*s30 + 2*s31 + -40*z + 20*z^2 }-> s32 :|: s30 >= 0, s30 <= z - 1, s31 >= 0, s31 <= s30 + 1, s32 >= 0, s32 <= s31, z - 1 >= 0 encode_g(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 0 encode_g(z) -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 6 + 20*z^2 }-> 1 + s33 :|: s33 >= 0, s33 <= z, z >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> 1 + 0 :|: z = 0 f(z) -{ 2*z }-> 1 + (1 + s') :|: s' >= 0, s' <= z - 1, z - 1 >= 0 g(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= z - 1 + 1, z - 1 >= 0 g(z) -{ 1 }-> 0 :|: z = 0 g(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_g}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [2 + 2*z], size: O(n^1) [1 + z] g: runtime: O(n^1) [1 + 2*z], size: O(n^1) [z] encArg: runtime: O(n^2) [6 + 20*z^2], size: O(n^1) [z] encode_f: runtime: O(n^2) [93 + 60*z^2], size: O(n^1) [1 + z] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z - 1 >= 0 encArg(z) -{ 89 + 2*s9 + -80*z + 20*z^2 }-> s10 :|: s9 >= 0, s9 <= z - 2, s10 >= 0, s10 <= 1 + s9, z - 2 >= 0 encArg(z) -{ 88 + 2*s11 + 2*s12 + -80*z + 20*z^2 }-> s13 :|: s11 >= 0, s11 <= z - 2, s12 >= 0, s12 <= s11, s13 >= 0, s13 <= s12, z - 2 >= 0 encArg(z) -{ 89 + 2*s14 + 2*s15 + -80*z + 20*z^2 }-> s16 :|: s14 >= 0, s14 <= z - 2, s15 >= 0, s15 <= s14 + 1, s16 >= 0, s16 <= s15, z - 2 >= 0 encArg(z) -{ 90 + 2*s17 + -80*z + 20*z^2 }-> s18 :|: s17 >= 0, s17 <= z - 2, s18 >= 0, s18 <= 1 + s17 + 1, z - 2 >= 0 encArg(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 1, z = 1 + 0 encArg(z) -{ 89 + 2*s19 + 2*s20 + -80*z + 20*z^2 }-> s21 :|: s19 >= 0, s19 <= z - 2, s20 >= 0, s20 <= s19, s21 >= 0, s21 <= s20 + 1, z - 2 >= 0 encArg(z) -{ 90 + 2*s22 + 2*s23 + -80*z + 20*z^2 }-> s24 :|: s22 >= 0, s22 <= z - 2, s23 >= 0, s23 <= s22 + 1, s24 >= 0, s24 <= s23 + 1, z - 2 >= 0 encArg(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 26 + -40*z + 20*z^2 }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z) -{ 30 + 2*s34 + -40*z + 20*z^2 }-> s35 :|: s34 >= 0, s34 <= z - 1, s35 >= 0, s35 <= 1 + s34 + 1, z - 1 >= 0 encode_f(z) -{ 29 + 2*s36 + 2*s37 + -40*z + 20*z^2 }-> s38 :|: s36 >= 0, s36 <= z - 1, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37 + 1, z - 1 >= 0 encode_f(z) -{ 30 + 2*s39 + 2*s40 + -40*z + 20*z^2 }-> s41 :|: s39 >= 0, s39 <= z - 1, s40 >= 0, s40 <= s39 + 1, s41 >= 0, s41 <= s40 + 1, z - 1 >= 0 encode_f(z) -{ 2 }-> s6 :|: s6 >= 0, s6 <= 0 + 1, z = 0 encode_f(z) -{ 2 }-> s7 :|: s7 >= 0, s7 <= 0 + 1, z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 29 + 2*s25 + -40*z + 20*z^2 }-> s26 :|: s25 >= 0, s25 <= z - 1, s26 >= 0, s26 <= 1 + s25, z - 1 >= 0 encode_g(z) -{ 28 + 2*s27 + 2*s28 + -40*z + 20*z^2 }-> s29 :|: s27 >= 0, s27 <= z - 1, s28 >= 0, s28 <= s27, s29 >= 0, s29 <= s28, z - 1 >= 0 encode_g(z) -{ 29 + 2*s30 + 2*s31 + -40*z + 20*z^2 }-> s32 :|: s30 >= 0, s30 <= z - 1, s31 >= 0, s31 <= s30 + 1, s32 >= 0, s32 <= s31, z - 1 >= 0 encode_g(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 0 encode_g(z) -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 6 + 20*z^2 }-> 1 + s33 :|: s33 >= 0, s33 <= z, z >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> 1 + 0 :|: z = 0 f(z) -{ 2*z }-> 1 + (1 + s') :|: s' >= 0, s' <= z - 1, z - 1 >= 0 g(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= z - 1 + 1, z - 1 >= 0 g(z) -{ 1 }-> 0 :|: z = 0 g(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_g}, {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [2 + 2*z], size: O(n^1) [1 + z] g: runtime: O(n^1) [1 + 2*z], size: O(n^1) [z] encArg: runtime: O(n^2) [6 + 20*z^2], size: O(n^1) [z] encode_f: runtime: O(n^2) [93 + 60*z^2], size: O(n^1) [1 + z] encode_g: runtime: ?, size: O(n^1) [z] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 88 + 60*z^2 ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z - 1 >= 0 encArg(z) -{ 89 + 2*s9 + -80*z + 20*z^2 }-> s10 :|: s9 >= 0, s9 <= z - 2, s10 >= 0, s10 <= 1 + s9, z - 2 >= 0 encArg(z) -{ 88 + 2*s11 + 2*s12 + -80*z + 20*z^2 }-> s13 :|: s11 >= 0, s11 <= z - 2, s12 >= 0, s12 <= s11, s13 >= 0, s13 <= s12, z - 2 >= 0 encArg(z) -{ 89 + 2*s14 + 2*s15 + -80*z + 20*z^2 }-> s16 :|: s14 >= 0, s14 <= z - 2, s15 >= 0, s15 <= s14 + 1, s16 >= 0, s16 <= s15, z - 2 >= 0 encArg(z) -{ 90 + 2*s17 + -80*z + 20*z^2 }-> s18 :|: s17 >= 0, s17 <= z - 2, s18 >= 0, s18 <= 1 + s17 + 1, z - 2 >= 0 encArg(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 1, z = 1 + 0 encArg(z) -{ 89 + 2*s19 + 2*s20 + -80*z + 20*z^2 }-> s21 :|: s19 >= 0, s19 <= z - 2, s20 >= 0, s20 <= s19, s21 >= 0, s21 <= s20 + 1, z - 2 >= 0 encArg(z) -{ 90 + 2*s22 + 2*s23 + -80*z + 20*z^2 }-> s24 :|: s22 >= 0, s22 <= z - 2, s23 >= 0, s23 <= s22 + 1, s24 >= 0, s24 <= s23 + 1, z - 2 >= 0 encArg(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 26 + -40*z + 20*z^2 }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z) -{ 30 + 2*s34 + -40*z + 20*z^2 }-> s35 :|: s34 >= 0, s34 <= z - 1, s35 >= 0, s35 <= 1 + s34 + 1, z - 1 >= 0 encode_f(z) -{ 29 + 2*s36 + 2*s37 + -40*z + 20*z^2 }-> s38 :|: s36 >= 0, s36 <= z - 1, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37 + 1, z - 1 >= 0 encode_f(z) -{ 30 + 2*s39 + 2*s40 + -40*z + 20*z^2 }-> s41 :|: s39 >= 0, s39 <= z - 1, s40 >= 0, s40 <= s39 + 1, s41 >= 0, s41 <= s40 + 1, z - 1 >= 0 encode_f(z) -{ 2 }-> s6 :|: s6 >= 0, s6 <= 0 + 1, z = 0 encode_f(z) -{ 2 }-> s7 :|: s7 >= 0, s7 <= 0 + 1, z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 29 + 2*s25 + -40*z + 20*z^2 }-> s26 :|: s25 >= 0, s25 <= z - 1, s26 >= 0, s26 <= 1 + s25, z - 1 >= 0 encode_g(z) -{ 28 + 2*s27 + 2*s28 + -40*z + 20*z^2 }-> s29 :|: s27 >= 0, s27 <= z - 1, s28 >= 0, s28 <= s27, s29 >= 0, s29 <= s28, z - 1 >= 0 encode_g(z) -{ 29 + 2*s30 + 2*s31 + -40*z + 20*z^2 }-> s32 :|: s30 >= 0, s30 <= z - 1, s31 >= 0, s31 <= s30 + 1, s32 >= 0, s32 <= s31, z - 1 >= 0 encode_g(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 0 encode_g(z) -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 6 + 20*z^2 }-> 1 + s33 :|: s33 >= 0, s33 <= z, z >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> 1 + 0 :|: z = 0 f(z) -{ 2*z }-> 1 + (1 + s') :|: s' >= 0, s' <= z - 1, z - 1 >= 0 g(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= z - 1 + 1, z - 1 >= 0 g(z) -{ 1 }-> 0 :|: z = 0 g(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [2 + 2*z], size: O(n^1) [1 + z] g: runtime: O(n^1) [1 + 2*z], size: O(n^1) [z] encArg: runtime: O(n^2) [6 + 20*z^2], size: O(n^1) [z] encode_f: runtime: O(n^2) [93 + 60*z^2], size: O(n^1) [1 + z] encode_g: runtime: O(n^2) [88 + 60*z^2], size: O(n^1) [z] ---------------------------------------- (49) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z - 1 >= 0 encArg(z) -{ 89 + 2*s9 + -80*z + 20*z^2 }-> s10 :|: s9 >= 0, s9 <= z - 2, s10 >= 0, s10 <= 1 + s9, z - 2 >= 0 encArg(z) -{ 88 + 2*s11 + 2*s12 + -80*z + 20*z^2 }-> s13 :|: s11 >= 0, s11 <= z - 2, s12 >= 0, s12 <= s11, s13 >= 0, s13 <= s12, z - 2 >= 0 encArg(z) -{ 89 + 2*s14 + 2*s15 + -80*z + 20*z^2 }-> s16 :|: s14 >= 0, s14 <= z - 2, s15 >= 0, s15 <= s14 + 1, s16 >= 0, s16 <= s15, z - 2 >= 0 encArg(z) -{ 90 + 2*s17 + -80*z + 20*z^2 }-> s18 :|: s17 >= 0, s17 <= z - 2, s18 >= 0, s18 <= 1 + s17 + 1, z - 2 >= 0 encArg(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 1, z = 1 + 0 encArg(z) -{ 89 + 2*s19 + 2*s20 + -80*z + 20*z^2 }-> s21 :|: s19 >= 0, s19 <= z - 2, s20 >= 0, s20 <= s19, s21 >= 0, s21 <= s20 + 1, z - 2 >= 0 encArg(z) -{ 90 + 2*s22 + 2*s23 + -80*z + 20*z^2 }-> s24 :|: s22 >= 0, s22 <= z - 2, s23 >= 0, s23 <= s22 + 1, s24 >= 0, s24 <= s23 + 1, z - 2 >= 0 encArg(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 26 + -40*z + 20*z^2 }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z) -{ 30 + 2*s34 + -40*z + 20*z^2 }-> s35 :|: s34 >= 0, s34 <= z - 1, s35 >= 0, s35 <= 1 + s34 + 1, z - 1 >= 0 encode_f(z) -{ 29 + 2*s36 + 2*s37 + -40*z + 20*z^2 }-> s38 :|: s36 >= 0, s36 <= z - 1, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37 + 1, z - 1 >= 0 encode_f(z) -{ 30 + 2*s39 + 2*s40 + -40*z + 20*z^2 }-> s41 :|: s39 >= 0, s39 <= z - 1, s40 >= 0, s40 <= s39 + 1, s41 >= 0, s41 <= s40 + 1, z - 1 >= 0 encode_f(z) -{ 2 }-> s6 :|: s6 >= 0, s6 <= 0 + 1, z = 0 encode_f(z) -{ 2 }-> s7 :|: s7 >= 0, s7 <= 0 + 1, z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 29 + 2*s25 + -40*z + 20*z^2 }-> s26 :|: s25 >= 0, s25 <= z - 1, s26 >= 0, s26 <= 1 + s25, z - 1 >= 0 encode_g(z) -{ 28 + 2*s27 + 2*s28 + -40*z + 20*z^2 }-> s29 :|: s27 >= 0, s27 <= z - 1, s28 >= 0, s28 <= s27, s29 >= 0, s29 <= s28, z - 1 >= 0 encode_g(z) -{ 29 + 2*s30 + 2*s31 + -40*z + 20*z^2 }-> s32 :|: s30 >= 0, s30 <= z - 1, s31 >= 0, s31 <= s30 + 1, s32 >= 0, s32 <= s31, z - 1 >= 0 encode_g(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 0 encode_g(z) -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 6 + 20*z^2 }-> 1 + s33 :|: s33 >= 0, s33 <= z, z >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> 1 + 0 :|: z = 0 f(z) -{ 2*z }-> 1 + (1 + s') :|: s' >= 0, s' <= z - 1, z - 1 >= 0 g(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= z - 1 + 1, z - 1 >= 0 g(z) -{ 1 }-> 0 :|: z = 0 g(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [2 + 2*z], size: O(n^1) [1 + z] g: runtime: O(n^1) [1 + 2*z], size: O(n^1) [z] encArg: runtime: O(n^2) [6 + 20*z^2], size: O(n^1) [z] encode_f: runtime: O(n^2) [93 + 60*z^2], size: O(n^1) [1 + z] encode_g: runtime: O(n^2) [88 + 60*z^2], size: O(n^1) [z] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z - 1 >= 0 encArg(z) -{ 89 + 2*s9 + -80*z + 20*z^2 }-> s10 :|: s9 >= 0, s9 <= z - 2, s10 >= 0, s10 <= 1 + s9, z - 2 >= 0 encArg(z) -{ 88 + 2*s11 + 2*s12 + -80*z + 20*z^2 }-> s13 :|: s11 >= 0, s11 <= z - 2, s12 >= 0, s12 <= s11, s13 >= 0, s13 <= s12, z - 2 >= 0 encArg(z) -{ 89 + 2*s14 + 2*s15 + -80*z + 20*z^2 }-> s16 :|: s14 >= 0, s14 <= z - 2, s15 >= 0, s15 <= s14 + 1, s16 >= 0, s16 <= s15, z - 2 >= 0 encArg(z) -{ 90 + 2*s17 + -80*z + 20*z^2 }-> s18 :|: s17 >= 0, s17 <= z - 2, s18 >= 0, s18 <= 1 + s17 + 1, z - 2 >= 0 encArg(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 1, z = 1 + 0 encArg(z) -{ 89 + 2*s19 + 2*s20 + -80*z + 20*z^2 }-> s21 :|: s19 >= 0, s19 <= z - 2, s20 >= 0, s20 <= s19, s21 >= 0, s21 <= s20 + 1, z - 2 >= 0 encArg(z) -{ 90 + 2*s22 + 2*s23 + -80*z + 20*z^2 }-> s24 :|: s22 >= 0, s22 <= z - 2, s23 >= 0, s23 <= s22 + 1, s24 >= 0, s24 <= s23 + 1, z - 2 >= 0 encArg(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 26 + -40*z + 20*z^2 }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z) -{ 30 + 2*s34 + -40*z + 20*z^2 }-> s35 :|: s34 >= 0, s34 <= z - 1, s35 >= 0, s35 <= 1 + s34 + 1, z - 1 >= 0 encode_f(z) -{ 29 + 2*s36 + 2*s37 + -40*z + 20*z^2 }-> s38 :|: s36 >= 0, s36 <= z - 1, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37 + 1, z - 1 >= 0 encode_f(z) -{ 30 + 2*s39 + 2*s40 + -40*z + 20*z^2 }-> s41 :|: s39 >= 0, s39 <= z - 1, s40 >= 0, s40 <= s39 + 1, s41 >= 0, s41 <= s40 + 1, z - 1 >= 0 encode_f(z) -{ 2 }-> s6 :|: s6 >= 0, s6 <= 0 + 1, z = 0 encode_f(z) -{ 2 }-> s7 :|: s7 >= 0, s7 <= 0 + 1, z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 29 + 2*s25 + -40*z + 20*z^2 }-> s26 :|: s25 >= 0, s25 <= z - 1, s26 >= 0, s26 <= 1 + s25, z - 1 >= 0 encode_g(z) -{ 28 + 2*s27 + 2*s28 + -40*z + 20*z^2 }-> s29 :|: s27 >= 0, s27 <= z - 1, s28 >= 0, s28 <= s27, s29 >= 0, s29 <= s28, z - 1 >= 0 encode_g(z) -{ 29 + 2*s30 + 2*s31 + -40*z + 20*z^2 }-> s32 :|: s30 >= 0, s30 <= z - 1, s31 >= 0, s31 <= s30 + 1, s32 >= 0, s32 <= s31, z - 1 >= 0 encode_g(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 0 encode_g(z) -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 6 + 20*z^2 }-> 1 + s33 :|: s33 >= 0, s33 <= z, z >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> 1 + 0 :|: z = 0 f(z) -{ 2*z }-> 1 + (1 + s') :|: s' >= 0, s' <= z - 1, z - 1 >= 0 g(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= z - 1 + 1, z - 1 >= 0 g(z) -{ 1 }-> 0 :|: z = 0 g(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [2 + 2*z], size: O(n^1) [1 + z] g: runtime: O(n^1) [1 + 2*z], size: O(n^1) [z] encArg: runtime: O(n^2) [6 + 20*z^2], size: O(n^1) [z] encode_f: runtime: O(n^2) [93 + 60*z^2], size: O(n^1) [1 + z] encode_g: runtime: O(n^2) [88 + 60*z^2], size: O(n^1) [z] encode_s: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (53) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 6 + 20*z^2 ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 }-> s'' :|: s'' >= 0, s'' <= 0, z = 1 + 0 encArg(z) -{ 1 }-> s1 :|: s1 >= 0, s1 <= 0, z - 1 >= 0 encArg(z) -{ 89 + 2*s9 + -80*z + 20*z^2 }-> s10 :|: s9 >= 0, s9 <= z - 2, s10 >= 0, s10 <= 1 + s9, z - 2 >= 0 encArg(z) -{ 88 + 2*s11 + 2*s12 + -80*z + 20*z^2 }-> s13 :|: s11 >= 0, s11 <= z - 2, s12 >= 0, s12 <= s11, s13 >= 0, s13 <= s12, z - 2 >= 0 encArg(z) -{ 89 + 2*s14 + 2*s15 + -80*z + 20*z^2 }-> s16 :|: s14 >= 0, s14 <= z - 2, s15 >= 0, s15 <= s14 + 1, s16 >= 0, s16 <= s15, z - 2 >= 0 encArg(z) -{ 90 + 2*s17 + -80*z + 20*z^2 }-> s18 :|: s17 >= 0, s17 <= z - 2, s18 >= 0, s18 <= 1 + s17 + 1, z - 2 >= 0 encArg(z) -{ 2 }-> s2 :|: s2 >= 0, s2 <= 0 + 1, z = 1 + 0 encArg(z) -{ 89 + 2*s19 + 2*s20 + -80*z + 20*z^2 }-> s21 :|: s19 >= 0, s19 <= z - 2, s20 >= 0, s20 <= s19, s21 >= 0, s21 <= s20 + 1, z - 2 >= 0 encArg(z) -{ 90 + 2*s22 + 2*s23 + -80*z + 20*z^2 }-> s24 :|: s22 >= 0, s22 <= z - 2, s23 >= 0, s23 <= s22 + 1, s24 >= 0, s24 <= s23 + 1, z - 2 >= 0 encArg(z) -{ 2 }-> s3 :|: s3 >= 0, s3 <= 0 + 1, z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 26 + -40*z + 20*z^2 }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z - 1 >= 0 encode_0 -{ 0 }-> 0 :|: encode_f(z) -{ 30 + 2*s34 + -40*z + 20*z^2 }-> s35 :|: s34 >= 0, s34 <= z - 1, s35 >= 0, s35 <= 1 + s34 + 1, z - 1 >= 0 encode_f(z) -{ 29 + 2*s36 + 2*s37 + -40*z + 20*z^2 }-> s38 :|: s36 >= 0, s36 <= z - 1, s37 >= 0, s37 <= s36, s38 >= 0, s38 <= s37 + 1, z - 1 >= 0 encode_f(z) -{ 30 + 2*s39 + 2*s40 + -40*z + 20*z^2 }-> s41 :|: s39 >= 0, s39 <= z - 1, s40 >= 0, s40 <= s39 + 1, s41 >= 0, s41 <= s40 + 1, z - 1 >= 0 encode_f(z) -{ 2 }-> s6 :|: s6 >= 0, s6 <= 0 + 1, z = 0 encode_f(z) -{ 2 }-> s7 :|: s7 >= 0, s7 <= 0 + 1, z >= 0 encode_f(z) -{ 0 }-> 0 :|: z >= 0 encode_g(z) -{ 29 + 2*s25 + -40*z + 20*z^2 }-> s26 :|: s25 >= 0, s25 <= z - 1, s26 >= 0, s26 <= 1 + s25, z - 1 >= 0 encode_g(z) -{ 28 + 2*s27 + 2*s28 + -40*z + 20*z^2 }-> s29 :|: s27 >= 0, s27 <= z - 1, s28 >= 0, s28 <= s27, s29 >= 0, s29 <= s28, z - 1 >= 0 encode_g(z) -{ 29 + 2*s30 + 2*s31 + -40*z + 20*z^2 }-> s32 :|: s30 >= 0, s30 <= z - 1, s31 >= 0, s31 <= s30 + 1, s32 >= 0, s32 <= s31, z - 1 >= 0 encode_g(z) -{ 1 }-> s4 :|: s4 >= 0, s4 <= 0, z = 0 encode_g(z) -{ 1 }-> s5 :|: s5 >= 0, s5 <= 0, z >= 0 encode_g(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 6 + 20*z^2 }-> 1 + s33 :|: s33 >= 0, s33 <= z, z >= 0 f(z) -{ 0 }-> 0 :|: z >= 0 f(z) -{ 1 }-> 1 + 0 :|: z = 0 f(z) -{ 2*z }-> 1 + (1 + s') :|: s' >= 0, s' <= z - 1, z - 1 >= 0 g(z) -{ 1 + 2*z }-> s :|: s >= 0, s <= z - 1 + 1, z - 1 >= 0 g(z) -{ 1 }-> 0 :|: z = 0 g(z) -{ 0 }-> 0 :|: z >= 0 Function symbols to be analyzed: Previous analysis results are: encode_0: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [2 + 2*z], size: O(n^1) [1 + z] g: runtime: O(n^1) [1 + 2*z], size: O(n^1) [z] encArg: runtime: O(n^2) [6 + 20*z^2], size: O(n^1) [z] encode_f: runtime: O(n^2) [93 + 60*z^2], size: O(n^1) [1 + z] encode_g: runtime: O(n^2) [88 + 60*z^2], size: O(n^1) [z] encode_s: runtime: O(n^2) [6 + 20*z^2], size: O(n^1) [1 + z] ---------------------------------------- (55) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (56) BOUNDS(1, n^2) ---------------------------------------- (57) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (58) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(s(x)) -> f(x) f(0') -> s(0') f(s(x)) -> s(s(g(x))) g(0') -> 0' The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0' Rewrite Strategy: INNERMOST ---------------------------------------- (59) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (60) Obligation: Innermost TRS: Rules: g(s(x)) -> f(x) f(0') -> s(0') f(s(x)) -> s(s(g(x))) g(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0' Types: g :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f s :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f f :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f 0' :: s:0':cons_g:cons_f encArg :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f cons_g :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f cons_f :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f encode_g :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f encode_s :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f encode_f :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f encode_0 :: s:0':cons_g:cons_f hole_s:0':cons_g:cons_f1_2 :: s:0':cons_g:cons_f gen_s:0':cons_g:cons_f2_2 :: Nat -> s:0':cons_g:cons_f ---------------------------------------- (61) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: g, f, encArg They will be analysed ascendingly in the following order: g = f g < encArg f < encArg ---------------------------------------- (62) Obligation: Innermost TRS: Rules: g(s(x)) -> f(x) f(0') -> s(0') f(s(x)) -> s(s(g(x))) g(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0' Types: g :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f s :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f f :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f 0' :: s:0':cons_g:cons_f encArg :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f cons_g :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f cons_f :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f encode_g :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f encode_s :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f encode_f :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f encode_0 :: s:0':cons_g:cons_f hole_s:0':cons_g:cons_f1_2 :: s:0':cons_g:cons_f gen_s:0':cons_g:cons_f2_2 :: Nat -> s:0':cons_g:cons_f Generator Equations: gen_s:0':cons_g:cons_f2_2(0) <=> 0' gen_s:0':cons_g:cons_f2_2(+(x, 1)) <=> s(gen_s:0':cons_g:cons_f2_2(x)) The following defined symbols remain to be analysed: f, g, encArg They will be analysed ascendingly in the following order: g = f g < encArg f < encArg ---------------------------------------- (63) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_s:0':cons_g:cons_f2_2(*(2, n4_2))) -> gen_s:0':cons_g:cons_f2_2(+(1, *(2, n4_2))), rt in Omega(1 + n4_2) Induction Base: f(gen_s:0':cons_g:cons_f2_2(*(2, 0))) ->_R^Omega(1) s(0') Induction Step: f(gen_s:0':cons_g:cons_f2_2(*(2, +(n4_2, 1)))) ->_R^Omega(1) s(s(g(gen_s:0':cons_g:cons_f2_2(+(1, *(2, n4_2)))))) ->_R^Omega(1) s(s(f(gen_s:0':cons_g:cons_f2_2(*(2, n4_2))))) ->_IH s(s(gen_s:0':cons_g:cons_f2_2(+(1, *(2, c5_2))))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (64) Complex Obligation (BEST) ---------------------------------------- (65) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: g(s(x)) -> f(x) f(0') -> s(0') f(s(x)) -> s(s(g(x))) g(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0' Types: g :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f s :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f f :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f 0' :: s:0':cons_g:cons_f encArg :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f cons_g :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f cons_f :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f encode_g :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f encode_s :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f encode_f :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f encode_0 :: s:0':cons_g:cons_f hole_s:0':cons_g:cons_f1_2 :: s:0':cons_g:cons_f gen_s:0':cons_g:cons_f2_2 :: Nat -> s:0':cons_g:cons_f Generator Equations: gen_s:0':cons_g:cons_f2_2(0) <=> 0' gen_s:0':cons_g:cons_f2_2(+(x, 1)) <=> s(gen_s:0':cons_g:cons_f2_2(x)) The following defined symbols remain to be analysed: f, g, encArg They will be analysed ascendingly in the following order: g = f g < encArg f < encArg ---------------------------------------- (66) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (67) BOUNDS(n^1, INF) ---------------------------------------- (68) Obligation: Innermost TRS: Rules: g(s(x)) -> f(x) f(0') -> s(0') f(s(x)) -> s(s(g(x))) g(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0' Types: g :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f s :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f f :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f 0' :: s:0':cons_g:cons_f encArg :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f cons_g :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f cons_f :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f encode_g :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f encode_s :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f encode_f :: s:0':cons_g:cons_f -> s:0':cons_g:cons_f encode_0 :: s:0':cons_g:cons_f hole_s:0':cons_g:cons_f1_2 :: s:0':cons_g:cons_f gen_s:0':cons_g:cons_f2_2 :: Nat -> s:0':cons_g:cons_f Lemmas: f(gen_s:0':cons_g:cons_f2_2(*(2, n4_2))) -> gen_s:0':cons_g:cons_f2_2(+(1, *(2, n4_2))), rt in Omega(1 + n4_2) Generator Equations: gen_s:0':cons_g:cons_f2_2(0) <=> 0' gen_s:0':cons_g:cons_f2_2(+(x, 1)) <=> s(gen_s:0':cons_g:cons_f2_2(x)) The following defined symbols remain to be analysed: g, encArg They will be analysed ascendingly in the following order: g = f g < encArg f < encArg ---------------------------------------- (69) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_s:0':cons_g:cons_f2_2(n297_2)) -> gen_s:0':cons_g:cons_f2_2(n297_2), rt in Omega(0) Induction Base: encArg(gen_s:0':cons_g:cons_f2_2(0)) ->_R^Omega(0) 0' Induction Step: encArg(gen_s:0':cons_g:cons_f2_2(+(n297_2, 1))) ->_R^Omega(0) s(encArg(gen_s:0':cons_g:cons_f2_2(n297_2))) ->_IH s(gen_s:0':cons_g:cons_f2_2(c298_2)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (70) BOUNDS(1, INF)