/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 50 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsProof [FINISHED, 0 ms] (8) BOUNDS(1, n^1) (9) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (10) TRS for Loop Detection (11) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(0) -> s(0) f(s(0)) -> s(0) f(s(s(x))) -> f(f(s(x))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(0) -> s(0) f(s(0)) -> s(0) f(s(s(x))) -> f(f(s(x))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(0) -> s(0) f(s(0)) -> s(0) f(s(s(x))) -> f(f(s(x))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(0) -> s(0) f(s(0)) -> s(0) f(s(s(x))) -> f(f(s(x))) encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (7) CpxTrsMatchBoundsProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 4. The certificate found is represented by the following graph. "[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] {(5,6,[f_1|0, encArg_1|0, encode_f_1|0, encode_0|0, encode_s_1|0, 0|1]), (5,7,[s_1|1, f_1|1]), (5,8,[f_1|1]), (5,10,[s_1|2]), (5,12,[s_1|2]), (5,13,[f_1|2]), (5,17,[s_1|3]), (6,6,[0|0, s_1|0, cons_f_1|0]), (7,6,[0|1, encArg_1|1]), (7,7,[s_1|1, f_1|1]), (7,10,[s_1|2]), (7,13,[f_1|2]), (7,12,[s_1|2]), (7,17,[s_1|3]), (8,9,[f_1|1]), (8,11,[s_1|1]), (8,8,[f_1|1]), (8,12,[s_1|2]), (9,6,[s_1|1]), (10,6,[0|2]), (11,6,[0|1]), (12,6,[0|2]), (13,14,[f_1|2]), (13,12,[s_1|2]), (13,13,[f_1|2]), (13,15,[f_1|3]), (13,17,[s_1|3]), (13,18,[s_1|4]), (14,7,[s_1|2]), (14,10,[s_1|2]), (14,12,[s_1|2]), (14,17,[s_1|2]), (15,16,[f_1|3]), (15,17,[s_1|3]), (15,18,[s_1|4]), (16,10,[s_1|3]), (16,12,[s_1|3]), (16,17,[s_1|3]), (17,6,[0|3]), (18,6,[0|4])}" ---------------------------------------- (8) BOUNDS(1, n^1) ---------------------------------------- (9) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (10) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(0) -> s(0) f(s(0)) -> s(0) f(s(s(x))) -> f(f(s(x))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (11) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence f(s(s(x))) ->^+ f(f(s(x))) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [x / s(x)]. The result substitution is [ ]. ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(0) -> s(0) f(s(0)) -> s(0) f(s(s(x))) -> f(f(s(x))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(0) -> s(0) f(s(0)) -> s(0) f(s(s(x))) -> f(f(s(x))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST