/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 92 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsTAProof [FINISHED, 475 ms] (8) BOUNDS(1, n^1) (9) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (10) TRS for Loop Detection (11) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(f(x)) -> f(c(f(x))) f(f(x)) -> f(d(f(x))) g(c(x)) -> x g(d(x)) -> x g(c(h(0))) -> g(d(1)) g(c(1)) -> g(d(h(0))) g(h(x)) -> g(x) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(c(x_1)) -> c(encArg(x_1)) encArg(d(x_1)) -> d(encArg(x_1)) encArg(h(x_1)) -> h(encArg(x_1)) encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1) -> d(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_0 -> 0 encode_1 -> 1 ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(f(x)) -> f(c(f(x))) f(f(x)) -> f(d(f(x))) g(c(x)) -> x g(d(x)) -> x g(c(h(0))) -> g(d(1)) g(c(1)) -> g(d(h(0))) g(h(x)) -> g(x) The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(d(x_1)) -> d(encArg(x_1)) encArg(h(x_1)) -> h(encArg(x_1)) encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1) -> d(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_0 -> 0 encode_1 -> 1 Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(f(x)) -> f(c(f(x))) f(f(x)) -> f(d(f(x))) g(c(x)) -> x g(d(x)) -> x g(c(h(0))) -> g(d(1)) g(c(1)) -> g(d(h(0))) g(h(x)) -> g(x) The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(d(x_1)) -> d(encArg(x_1)) encArg(h(x_1)) -> h(encArg(x_1)) encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1) -> d(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_0 -> 0 encode_1 -> 1 Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(f(x)) -> f(c(f(x))) f(f(x)) -> f(d(f(x))) g(c(x)) -> x g(d(x)) -> x g(c(h(0))) -> g(d(1)) g(c(1)) -> g(d(h(0))) g(h(x)) -> g(x) encArg(c(x_1)) -> c(encArg(x_1)) encArg(d(x_1)) -> d(encArg(x_1)) encArg(h(x_1)) -> h(encArg(x_1)) encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1) -> d(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_0 -> 0 encode_1 -> 1 S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (7) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 3. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] transitions: c0(0) -> 0 d0(0) -> 0 h0(0) -> 0 00() -> 0 10() -> 0 cons_f0(0) -> 0 cons_g0(0) -> 0 f0(0) -> 1 g0(0) -> 2 encArg0(0) -> 3 encode_f0(0) -> 4 encode_c0(0) -> 5 encode_d0(0) -> 6 encode_g0(0) -> 7 encode_h0(0) -> 8 encode_00() -> 9 encode_10() -> 10 11() -> 12 d1(12) -> 11 g1(11) -> 2 01() -> 15 h1(15) -> 14 d1(14) -> 13 g1(13) -> 2 g1(0) -> 2 encArg1(0) -> 16 c1(16) -> 3 encArg1(0) -> 17 d1(17) -> 3 encArg1(0) -> 18 h1(18) -> 3 01() -> 3 11() -> 3 encArg1(0) -> 19 f1(19) -> 3 encArg1(0) -> 20 g1(20) -> 3 f1(19) -> 4 c1(16) -> 5 d1(17) -> 6 g1(20) -> 7 h1(18) -> 8 01() -> 9 11() -> 10 c1(16) -> 16 c1(16) -> 17 c1(16) -> 18 c1(16) -> 19 c1(16) -> 20 d1(17) -> 16 d1(17) -> 17 d1(17) -> 18 d1(17) -> 19 d1(17) -> 20 h1(18) -> 16 h1(18) -> 17 h1(18) -> 18 h1(18) -> 19 h1(18) -> 20 01() -> 16 01() -> 17 01() -> 18 01() -> 19 01() -> 20 11() -> 16 11() -> 17 11() -> 18 11() -> 19 11() -> 20 f1(19) -> 16 f1(19) -> 17 f1(19) -> 18 f1(19) -> 19 f1(19) -> 20 g1(20) -> 16 g1(20) -> 17 g1(20) -> 18 g1(20) -> 19 g1(20) -> 20 12() -> 22 d2(22) -> 21 g2(21) -> 3 g2(21) -> 7 g2(21) -> 16 02() -> 25 h2(25) -> 24 d2(24) -> 23 g2(23) -> 3 g2(23) -> 7 g2(23) -> 16 g2(18) -> 3 g2(18) -> 7 g2(18) -> 16 f2(19) -> 27 c2(27) -> 26 f2(26) -> 3 f2(26) -> 4 f2(26) -> 16 f2(19) -> 29 d2(29) -> 28 f2(28) -> 3 f2(28) -> 4 f2(28) -> 16 f2(26) -> 27 f2(28) -> 27 f2(26) -> 29 f3(26) -> 31 c3(31) -> 30 f3(30) -> 27 f3(28) -> 31 f3(30) -> 29 f2(28) -> 29 f3(26) -> 33 d3(33) -> 32 f3(32) -> 27 f3(28) -> 33 f3(32) -> 29 g2(25) -> 3 g2(25) -> 7 g2(25) -> 16 g3(25) -> 3 g3(25) -> 7 g3(25) -> 16 0 -> 2 12 -> 2 14 -> 2 16 -> 3 16 -> 7 16 -> 17 16 -> 18 16 -> 19 16 -> 20 17 -> 3 17 -> 7 17 -> 16 22 -> 3 22 -> 7 22 -> 16 24 -> 3 24 -> 7 24 -> 16 ---------------------------------------- (8) BOUNDS(1, n^1) ---------------------------------------- (9) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (10) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(f(x)) -> f(c(f(x))) f(f(x)) -> f(d(f(x))) g(c(x)) -> x g(d(x)) -> x g(c(h(0))) -> g(d(1)) g(c(1)) -> g(d(h(0))) g(h(x)) -> g(x) The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(d(x_1)) -> d(encArg(x_1)) encArg(h(x_1)) -> h(encArg(x_1)) encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1) -> d(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_0 -> 0 encode_1 -> 1 Rewrite Strategy: INNERMOST ---------------------------------------- (11) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence g(h(x)) ->^+ g(x) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / h(x)]. The result substitution is [ ]. ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(f(x)) -> f(c(f(x))) f(f(x)) -> f(d(f(x))) g(c(x)) -> x g(d(x)) -> x g(c(h(0))) -> g(d(1)) g(c(1)) -> g(d(h(0))) g(h(x)) -> g(x) The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(d(x_1)) -> d(encArg(x_1)) encArg(h(x_1)) -> h(encArg(x_1)) encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1) -> d(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_0 -> 0 encode_1 -> 1 Rewrite Strategy: INNERMOST ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(f(x)) -> f(c(f(x))) f(f(x)) -> f(d(f(x))) g(c(x)) -> x g(d(x)) -> x g(c(h(0))) -> g(d(1)) g(c(1)) -> g(d(h(0))) g(h(x)) -> g(x) The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(d(x_1)) -> d(encArg(x_1)) encArg(h(x_1)) -> h(encArg(x_1)) encArg(0) -> 0 encArg(1) -> 1 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) encode_d(x_1) -> d(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_0 -> 0 encode_1 -> 1 Rewrite Strategy: INNERMOST