/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 38 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsProof [FINISHED, 0 ms] (8) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: p(f(f(x))) -> q(f(g(x))) p(g(g(x))) -> q(g(f(x))) q(f(f(x))) -> p(f(g(x))) q(g(g(x))) -> p(g(f(x))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(f(x_1)) -> f(encArg(x_1)) encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_q(x_1)) -> q(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_q(x_1) -> q(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: p(f(f(x))) -> q(f(g(x))) p(g(g(x))) -> q(g(f(x))) q(f(f(x))) -> p(f(g(x))) q(g(g(x))) -> p(g(f(x))) The (relative) TRS S consists of the following rules: encArg(f(x_1)) -> f(encArg(x_1)) encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_q(x_1)) -> q(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_q(x_1) -> q(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: p(f(f(x))) -> q(f(g(x))) p(g(g(x))) -> q(g(f(x))) q(f(f(x))) -> p(f(g(x))) q(g(g(x))) -> p(g(f(x))) The (relative) TRS S consists of the following rules: encArg(f(x_1)) -> f(encArg(x_1)) encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_q(x_1)) -> q(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_q(x_1) -> q(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: p(f(f(x))) -> q(f(g(x))) p(g(g(x))) -> q(g(f(x))) q(f(f(x))) -> p(f(g(x))) q(g(g(x))) -> p(g(f(x))) encArg(f(x_1)) -> f(encArg(x_1)) encArg(g(x_1)) -> g(encArg(x_1)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_q(x_1)) -> q(encArg(x_1)) encode_p(x_1) -> p(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_q(x_1) -> q(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (7) CpxTrsMatchBoundsProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 2. The certificate found is represented by the following graph. "[5, 6, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] {(5,6,[p_1|0, q_1|0, encArg_1|0, encode_p_1|0, encode_f_1|0, encode_q_1|0, encode_g_1|0]), (5,14,[q_1|1]), (5,16,[q_1|1]), (5,18,[p_1|1]), (5,20,[p_1|1]), (5,22,[f_1|1, g_1|1, p_1|1, q_1|1]), (5,23,[q_1|2]), (5,25,[q_1|2]), (5,27,[p_1|2]), (5,29,[p_1|2]), (6,6,[f_1|0, g_1|0, cons_p_1|0, cons_q_1|0]), (14,15,[f_1|1]), (15,6,[g_1|1]), (16,17,[g_1|1]), (17,6,[f_1|1]), (18,19,[f_1|1]), (19,6,[g_1|1]), (20,21,[g_1|1]), (21,6,[f_1|1]), (22,6,[encArg_1|1]), (22,22,[f_1|1, g_1|1, p_1|1, q_1|1]), (22,23,[q_1|2]), (22,25,[q_1|2]), (22,27,[p_1|2]), (22,29,[p_1|2]), (23,24,[f_1|2]), (24,22,[g_1|2]), (25,26,[g_1|2]), (26,22,[f_1|2]), (27,28,[f_1|2]), (28,22,[g_1|2]), (29,30,[g_1|2]), (30,22,[f_1|2])}" ---------------------------------------- (8) BOUNDS(1, n^1)