/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 174 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 235 ms] (12) proven lower bound (13) LowerBoundPropagationProof [FINISHED, 0 ms] (14) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: times(x, plus(y, 1)) -> plus(times(x, plus(y, times(1, 0))), x) times(x, 1) -> x plus(x, 0) -> x times(x, 0) -> 0 S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_1 -> 1 encode_0 -> 0 ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: times(x, plus(y, 1)) -> plus(times(x, plus(y, times(1, 0))), x) times(x, 1) -> x plus(x, 0) -> x times(x, 0) -> 0 The (relative) TRS S consists of the following rules: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_1 -> 1 encode_0 -> 0 Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: times(x, plus(y, 1)) -> plus(times(x, plus(y, times(1, 0))), x) times(x, 1) -> x plus(x, 0) -> x times(x, 0) -> 0 The (relative) TRS S consists of the following rules: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_1 -> 1 encode_0 -> 0 Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: times(x, plus(y, 1')) -> plus(times(x, plus(y, times(1', 0'))), x) times(x, 1') -> x plus(x, 0') -> x times(x, 0') -> 0' The (relative) TRS S consists of the following rules: encArg(1') -> 1' encArg(0') -> 0' encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_1 -> 1' encode_0 -> 0' Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: times(x, plus(y, 1')) -> plus(times(x, plus(y, times(1', 0'))), x) times(x, 1') -> x plus(x, 0') -> x times(x, 0') -> 0' encArg(1') -> 1' encArg(0') -> 0' encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_1 -> 1' encode_0 -> 0' Types: times :: 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus plus :: 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus 1' :: 1':0':cons_times:cons_plus 0' :: 1':0':cons_times:cons_plus encArg :: 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus cons_times :: 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus cons_plus :: 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus encode_times :: 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus encode_plus :: 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus encode_1 :: 1':0':cons_times:cons_plus encode_0 :: 1':0':cons_times:cons_plus hole_1':0':cons_times:cons_plus1_3 :: 1':0':cons_times:cons_plus gen_1':0':cons_times:cons_plus2_3 :: Nat -> 1':0':cons_times:cons_plus ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: times, encArg They will be analysed ascendingly in the following order: times < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: times(x, plus(y, 1')) -> plus(times(x, plus(y, times(1', 0'))), x) times(x, 1') -> x plus(x, 0') -> x times(x, 0') -> 0' encArg(1') -> 1' encArg(0') -> 0' encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_1 -> 1' encode_0 -> 0' Types: times :: 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus plus :: 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus 1' :: 1':0':cons_times:cons_plus 0' :: 1':0':cons_times:cons_plus encArg :: 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus cons_times :: 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus cons_plus :: 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus encode_times :: 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus encode_plus :: 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus encode_1 :: 1':0':cons_times:cons_plus encode_0 :: 1':0':cons_times:cons_plus hole_1':0':cons_times:cons_plus1_3 :: 1':0':cons_times:cons_plus gen_1':0':cons_times:cons_plus2_3 :: Nat -> 1':0':cons_times:cons_plus Generator Equations: gen_1':0':cons_times:cons_plus2_3(0) <=> 1' gen_1':0':cons_times:cons_plus2_3(+(x, 1)) <=> cons_times(1', gen_1':0':cons_times:cons_plus2_3(x)) The following defined symbols remain to be analysed: times, encArg They will be analysed ascendingly in the following order: times < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_1':0':cons_times:cons_plus2_3(n18_3)) -> gen_1':0':cons_times:cons_plus2_3(0), rt in Omega(n18_3) Induction Base: encArg(gen_1':0':cons_times:cons_plus2_3(0)) ->_R^Omega(0) 1' Induction Step: encArg(gen_1':0':cons_times:cons_plus2_3(+(n18_3, 1))) ->_R^Omega(0) times(encArg(1'), encArg(gen_1':0':cons_times:cons_plus2_3(n18_3))) ->_R^Omega(0) times(1', encArg(gen_1':0':cons_times:cons_plus2_3(n18_3))) ->_IH times(1', gen_1':0':cons_times:cons_plus2_3(0)) ->_R^Omega(1) 1' We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: times(x, plus(y, 1')) -> plus(times(x, plus(y, times(1', 0'))), x) times(x, 1') -> x plus(x, 0') -> x times(x, 0') -> 0' encArg(1') -> 1' encArg(0') -> 0' encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_1 -> 1' encode_0 -> 0' Types: times :: 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus plus :: 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus 1' :: 1':0':cons_times:cons_plus 0' :: 1':0':cons_times:cons_plus encArg :: 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus cons_times :: 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus cons_plus :: 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus encode_times :: 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus encode_plus :: 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus -> 1':0':cons_times:cons_plus encode_1 :: 1':0':cons_times:cons_plus encode_0 :: 1':0':cons_times:cons_plus hole_1':0':cons_times:cons_plus1_3 :: 1':0':cons_times:cons_plus gen_1':0':cons_times:cons_plus2_3 :: Nat -> 1':0':cons_times:cons_plus Generator Equations: gen_1':0':cons_times:cons_plus2_3(0) <=> 1' gen_1':0':cons_times:cons_plus2_3(+(x, 1)) <=> cons_times(1', gen_1':0':cons_times:cons_plus2_3(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (13) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (14) BOUNDS(n^1, INF)