/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 164 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsTAProof [FINISHED, 1013 ms] (8) BOUNDS(1, n^1) (9) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (10) TRS for Loop Detection (11) DecreasingLoopProof [LOWER BOUND(ID), 14 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: not(true) -> false not(false) -> true evenodd(x, 0) -> not(evenodd(x, s(0))) evenodd(0, s(0)) -> false evenodd(s(x), s(0)) -> evenodd(x, 0) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(true) -> true encArg(false) -> false encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_evenodd(x_1, x_2)) -> evenodd(encArg(x_1), encArg(x_2)) encode_not(x_1) -> not(encArg(x_1)) encode_true -> true encode_false -> false encode_evenodd(x_1, x_2) -> evenodd(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: not(true) -> false not(false) -> true evenodd(x, 0) -> not(evenodd(x, s(0))) evenodd(0, s(0)) -> false evenodd(s(x), s(0)) -> evenodd(x, 0) The (relative) TRS S consists of the following rules: encArg(true) -> true encArg(false) -> false encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_evenodd(x_1, x_2)) -> evenodd(encArg(x_1), encArg(x_2)) encode_not(x_1) -> not(encArg(x_1)) encode_true -> true encode_false -> false encode_evenodd(x_1, x_2) -> evenodd(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: not(true) -> false not(false) -> true evenodd(x, 0) -> not(evenodd(x, s(0))) evenodd(0, s(0)) -> false evenodd(s(x), s(0)) -> evenodd(x, 0) The (relative) TRS S consists of the following rules: encArg(true) -> true encArg(false) -> false encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_evenodd(x_1, x_2)) -> evenodd(encArg(x_1), encArg(x_2)) encode_not(x_1) -> not(encArg(x_1)) encode_true -> true encode_false -> false encode_evenodd(x_1, x_2) -> evenodd(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: not(true) -> false not(false) -> true evenodd(x, 0) -> not(evenodd(x, s(0))) evenodd(0, s(0)) -> false evenodd(s(x), s(0)) -> evenodd(x, 0) encArg(true) -> true encArg(false) -> false encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_evenodd(x_1, x_2)) -> evenodd(encArg(x_1), encArg(x_2)) encode_not(x_1) -> not(encArg(x_1)) encode_true -> true encode_false -> false encode_evenodd(x_1, x_2) -> evenodd(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (7) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 4. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7, 8, 9] transitions: true0() -> 0 false0() -> 0 00() -> 0 s0(0) -> 0 cons_not0(0) -> 0 cons_evenodd0(0, 0) -> 0 not0(0) -> 1 evenodd0(0, 0) -> 2 encArg0(0) -> 3 encode_not0(0) -> 4 encode_true0() -> 5 encode_false0() -> 6 encode_evenodd0(0, 0) -> 7 encode_00() -> 8 encode_s0(0) -> 9 false1() -> 1 true1() -> 1 01() -> 12 s1(12) -> 11 evenodd1(0, 11) -> 10 not1(10) -> 2 false1() -> 2 01() -> 13 evenodd1(0, 13) -> 2 true1() -> 3 false1() -> 3 01() -> 3 encArg1(0) -> 14 s1(14) -> 3 encArg1(0) -> 15 not1(15) -> 3 encArg1(0) -> 16 encArg1(0) -> 17 evenodd1(16, 17) -> 3 not1(15) -> 4 true1() -> 5 false1() -> 6 evenodd1(16, 17) -> 7 01() -> 8 s1(14) -> 9 02() -> 20 s2(20) -> 19 evenodd2(0, 19) -> 18 not2(18) -> 2 false1() -> 10 evenodd1(0, 13) -> 10 true1() -> 14 true1() -> 15 true1() -> 16 true1() -> 17 false1() -> 14 false1() -> 15 false1() -> 16 false1() -> 17 01() -> 14 01() -> 15 01() -> 16 01() -> 17 s1(14) -> 14 s1(14) -> 15 s1(14) -> 16 s1(14) -> 17 not1(15) -> 14 not1(15) -> 15 not1(15) -> 16 not1(15) -> 17 evenodd1(16, 17) -> 14 evenodd1(16, 17) -> 15 evenodd1(16, 17) -> 16 evenodd1(16, 17) -> 17 false2() -> 3 false2() -> 4 false2() -> 14 false2() -> 15 false2() -> 16 false2() -> 17 true2() -> 2 true2() -> 3 true2() -> 4 true2() -> 14 true2() -> 15 true2() -> 16 true2() -> 17 evenodd2(16, 19) -> 18 not2(18) -> 3 not2(18) -> 7 not2(18) -> 10 not2(18) -> 14 not2(18) -> 15 not2(18) -> 16 not2(18) -> 17 false2() -> 7 02() -> 21 evenodd2(14, 21) -> 3 evenodd2(14, 21) -> 7 evenodd2(14, 21) -> 14 evenodd2(14, 21) -> 15 evenodd2(14, 21) -> 16 evenodd2(14, 21) -> 17 false1() -> 18 evenodd1(0, 13) -> 18 not2(18) -> 18 true2() -> 7 true2() -> 10 03() -> 24 s3(24) -> 23 evenodd3(14, 23) -> 22 not3(22) -> 3 not3(22) -> 7 not3(22) -> 14 not3(22) -> 15 not3(22) -> 16 not3(22) -> 17 false2() -> 18 evenodd2(14, 21) -> 18 true2() -> 18 not3(22) -> 18 false2() -> 2 true3() -> 2 true3() -> 3 true3() -> 7 true3() -> 10 true3() -> 14 true3() -> 15 true3() -> 16 true3() -> 17 true3() -> 18 false2() -> 22 evenodd2(14, 21) -> 22 not3(22) -> 22 false3() -> 2 false3() -> 3 false3() -> 7 false3() -> 10 false3() -> 14 false3() -> 15 false3() -> 16 false3() -> 17 false3() -> 18 true3() -> 22 false4() -> 3 false4() -> 7 false4() -> 14 false4() -> 15 false4() -> 16 false4() -> 17 false4() -> 18 false4() -> 22 true4() -> 3 true4() -> 7 true4() -> 14 true4() -> 15 true4() -> 16 true4() -> 17 true4() -> 18 true4() -> 22 ---------------------------------------- (8) BOUNDS(1, n^1) ---------------------------------------- (9) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (10) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: not(true) -> false not(false) -> true evenodd(x, 0) -> not(evenodd(x, s(0))) evenodd(0, s(0)) -> false evenodd(s(x), s(0)) -> evenodd(x, 0) The (relative) TRS S consists of the following rules: encArg(true) -> true encArg(false) -> false encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_evenodd(x_1, x_2)) -> evenodd(encArg(x_1), encArg(x_2)) encode_not(x_1) -> not(encArg(x_1)) encode_true -> true encode_false -> false encode_evenodd(x_1, x_2) -> evenodd(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (11) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence evenodd(s(x1_0), 0) ->^+ not(evenodd(x1_0, 0)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [x1_0 / s(x1_0)]. The result substitution is [ ]. ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: not(true) -> false not(false) -> true evenodd(x, 0) -> not(evenodd(x, s(0))) evenodd(0, s(0)) -> false evenodd(s(x), s(0)) -> evenodd(x, 0) The (relative) TRS S consists of the following rules: encArg(true) -> true encArg(false) -> false encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_evenodd(x_1, x_2)) -> evenodd(encArg(x_1), encArg(x_2)) encode_not(x_1) -> not(encArg(x_1)) encode_true -> true encode_false -> false encode_evenodd(x_1, x_2) -> evenodd(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: not(true) -> false not(false) -> true evenodd(x, 0) -> not(evenodd(x, s(0))) evenodd(0, s(0)) -> false evenodd(s(x), s(0)) -> evenodd(x, 0) The (relative) TRS S consists of the following rules: encArg(true) -> true encArg(false) -> false encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_evenodd(x_1, x_2)) -> evenodd(encArg(x_1), encArg(x_2)) encode_not(x_1) -> not(encArg(x_1)) encode_true -> true encode_false -> false encode_evenodd(x_1, x_2) -> evenodd(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) Rewrite Strategy: INNERMOST