/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^3)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^3). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 41 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (14) CdtProblem (15) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 64 ms] (18) CdtProblem (19) CdtRuleRemovalProof [UPPER BOUND(ADD(n^3)), 48 ms] (20) CdtProblem (21) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (22) BOUNDS(1, 1) (23) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 3 ms] (24) TRS for Loop Detection (25) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (26) BEST (27) proven lower bound (28) LowerBoundPropagationProof [FINISHED, 0 ms] (29) BOUNDS(n^1, INF) (30) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: a(x1) -> x1 a(b(x1)) -> b(c(a(x1))) c(a(c(x1))) -> b(a(a(x1))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(b(x_1)) -> b(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: a(x1) -> x1 a(b(x1)) -> b(c(a(x1))) c(a(c(x1))) -> b(a(a(x1))) The (relative) TRS S consists of the following rules: encArg(b(x_1)) -> b(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: a(x1) -> x1 a(b(x1)) -> b(c(a(x1))) c(a(c(x1))) -> b(a(a(x1))) The (relative) TRS S consists of the following rules: encArg(b(x_1)) -> b(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b(z0)) -> b(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) a(z0) -> z0 a(b(z0)) -> b(c(a(z0))) c(a(c(z0))) -> b(a(a(z0))) Tuples: ENCARG(b(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c3(C(encArg(z0)), ENCARG(z0)) ENCODE_A(z0) -> c4(A(encArg(z0)), ENCARG(z0)) ENCODE_B(z0) -> c5(ENCARG(z0)) ENCODE_C(z0) -> c6(C(encArg(z0)), ENCARG(z0)) A(z0) -> c7 A(b(z0)) -> c8(C(a(z0)), A(z0)) C(a(c(z0))) -> c9(A(a(z0)), A(z0)) S tuples: A(z0) -> c7 A(b(z0)) -> c8(C(a(z0)), A(z0)) C(a(c(z0))) -> c9(A(a(z0)), A(z0)) K tuples:none Defined Rule Symbols: a_1, c_1, encArg_1, encode_a_1, encode_b_1, encode_c_1 Defined Pair Symbols: ENCARG_1, ENCODE_A_1, ENCODE_B_1, ENCODE_C_1, A_1, C_1 Compound Symbols: c1_1, c2_2, c3_2, c4_2, c5_1, c6_2, c7, c8_2, c9_2 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_B(z0) -> c5(ENCARG(z0)) C(a(c(z0))) -> c9(A(a(z0)), A(z0)) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b(z0)) -> b(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) a(z0) -> z0 a(b(z0)) -> b(c(a(z0))) c(a(c(z0))) -> b(a(a(z0))) Tuples: ENCARG(b(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c3(C(encArg(z0)), ENCARG(z0)) ENCODE_A(z0) -> c4(A(encArg(z0)), ENCARG(z0)) ENCODE_C(z0) -> c6(C(encArg(z0)), ENCARG(z0)) A(z0) -> c7 A(b(z0)) -> c8(C(a(z0)), A(z0)) S tuples: A(z0) -> c7 A(b(z0)) -> c8(C(a(z0)), A(z0)) K tuples:none Defined Rule Symbols: a_1, c_1, encArg_1, encode_a_1, encode_b_1, encode_c_1 Defined Pair Symbols: ENCARG_1, ENCODE_A_1, ENCODE_C_1, A_1 Compound Symbols: c1_1, c2_2, c3_2, c4_2, c6_2, c7, c8_2 ---------------------------------------- (9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 3 trailing tuple parts ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b(z0)) -> b(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) a(z0) -> z0 a(b(z0)) -> b(c(a(z0))) c(a(c(z0))) -> b(a(a(z0))) Tuples: ENCARG(b(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCODE_A(z0) -> c4(A(encArg(z0)), ENCARG(z0)) A(z0) -> c7 ENCARG(cons_c(z0)) -> c3(ENCARG(z0)) ENCODE_C(z0) -> c6(ENCARG(z0)) A(b(z0)) -> c8(A(z0)) S tuples: A(z0) -> c7 A(b(z0)) -> c8(A(z0)) K tuples:none Defined Rule Symbols: a_1, c_1, encArg_1, encode_a_1, encode_b_1, encode_c_1 Defined Pair Symbols: ENCARG_1, ENCODE_A_1, A_1, ENCODE_C_1 Compound Symbols: c1_1, c2_2, c4_2, c7, c3_1, c6_1, c8_1 ---------------------------------------- (11) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b(z0)) -> b(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) a(z0) -> z0 a(b(z0)) -> b(c(a(z0))) c(a(c(z0))) -> b(a(a(z0))) Tuples: ENCARG(b(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) A(z0) -> c7 ENCARG(cons_c(z0)) -> c3(ENCARG(z0)) ENCODE_C(z0) -> c6(ENCARG(z0)) A(b(z0)) -> c8(A(z0)) ENCODE_A(z0) -> c5(A(encArg(z0))) ENCODE_A(z0) -> c5(ENCARG(z0)) S tuples: A(z0) -> c7 A(b(z0)) -> c8(A(z0)) K tuples:none Defined Rule Symbols: a_1, c_1, encArg_1, encode_a_1, encode_b_1, encode_c_1 Defined Pair Symbols: ENCARG_1, A_1, ENCODE_C_1, ENCODE_A_1 Compound Symbols: c1_1, c2_2, c7, c3_1, c6_1, c8_1, c5_1 ---------------------------------------- (13) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_C(z0) -> c6(ENCARG(z0)) ENCODE_A(z0) -> c5(ENCARG(z0)) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b(z0)) -> b(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) a(z0) -> z0 a(b(z0)) -> b(c(a(z0))) c(a(c(z0))) -> b(a(a(z0))) Tuples: ENCARG(b(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) A(z0) -> c7 ENCARG(cons_c(z0)) -> c3(ENCARG(z0)) A(b(z0)) -> c8(A(z0)) ENCODE_A(z0) -> c5(A(encArg(z0))) S tuples: A(z0) -> c7 A(b(z0)) -> c8(A(z0)) K tuples:none Defined Rule Symbols: a_1, c_1, encArg_1, encode_a_1, encode_b_1, encode_c_1 Defined Pair Symbols: ENCARG_1, A_1, ENCODE_A_1 Compound Symbols: c1_1, c2_2, c7, c3_1, c8_1, c5_1 ---------------------------------------- (15) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) c(a(c(z0))) -> b(a(a(z0))) ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b(z0)) -> b(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) a(z0) -> z0 a(b(z0)) -> b(c(a(z0))) Tuples: ENCARG(b(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) A(z0) -> c7 ENCARG(cons_c(z0)) -> c3(ENCARG(z0)) A(b(z0)) -> c8(A(z0)) ENCODE_A(z0) -> c5(A(encArg(z0))) S tuples: A(z0) -> c7 A(b(z0)) -> c8(A(z0)) K tuples:none Defined Rule Symbols: encArg_1, a_1 Defined Pair Symbols: ENCARG_1, A_1, ENCODE_A_1 Compound Symbols: c1_1, c2_2, c7, c3_1, c8_1, c5_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. A(z0) -> c7 We considered the (Usable) Rules:none And the Tuples: ENCARG(b(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) A(z0) -> c7 ENCARG(cons_c(z0)) -> c3(ENCARG(z0)) A(b(z0)) -> c8(A(z0)) ENCODE_A(z0) -> c5(A(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A(x_1)) = [2] POL(ENCARG(x_1)) = x_1^2 POL(ENCODE_A(x_1)) = [2] + [2]x_1^2 POL(a(x_1)) = [2] POL(b(x_1)) = x_1 POL(c(x_1)) = [2] + x_1 POL(c1(x_1)) = x_1 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1)) = x_1 POL(c5(x_1)) = x_1 POL(c7) = 0 POL(c8(x_1)) = x_1 POL(cons_a(x_1)) = [2] + x_1 POL(cons_c(x_1)) = x_1 POL(encArg(x_1)) = 0 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b(z0)) -> b(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) a(z0) -> z0 a(b(z0)) -> b(c(a(z0))) Tuples: ENCARG(b(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) A(z0) -> c7 ENCARG(cons_c(z0)) -> c3(ENCARG(z0)) A(b(z0)) -> c8(A(z0)) ENCODE_A(z0) -> c5(A(encArg(z0))) S tuples: A(b(z0)) -> c8(A(z0)) K tuples: A(z0) -> c7 Defined Rule Symbols: encArg_1, a_1 Defined Pair Symbols: ENCARG_1, A_1, ENCODE_A_1 Compound Symbols: c1_1, c2_2, c7, c3_1, c8_1, c5_1 ---------------------------------------- (19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^3))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. A(b(z0)) -> c8(A(z0)) We considered the (Usable) Rules: a(z0) -> z0 encArg(b(z0)) -> b(encArg(z0)) a(b(z0)) -> b(c(a(z0))) encArg(cons_c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) And the Tuples: ENCARG(b(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) A(z0) -> c7 ENCARG(cons_c(z0)) -> c3(ENCARG(z0)) A(b(z0)) -> c8(A(z0)) ENCODE_A(z0) -> c5(A(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A(x_1)) = [1] + x_1 POL(ENCARG(x_1)) = x_1^3 POL(ENCODE_A(x_1)) = [1] + x_1^2 POL(a(x_1)) = x_1 POL(b(x_1)) = [1] + x_1 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1)) = x_1 POL(c5(x_1)) = x_1 POL(c7) = 0 POL(c8(x_1)) = x_1 POL(cons_a(x_1)) = [1] + x_1 POL(cons_c(x_1)) = x_1 POL(encArg(x_1)) = x_1^2 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b(z0)) -> b(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) a(z0) -> z0 a(b(z0)) -> b(c(a(z0))) Tuples: ENCARG(b(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) A(z0) -> c7 ENCARG(cons_c(z0)) -> c3(ENCARG(z0)) A(b(z0)) -> c8(A(z0)) ENCODE_A(z0) -> c5(A(encArg(z0))) S tuples:none K tuples: A(z0) -> c7 A(b(z0)) -> c8(A(z0)) Defined Rule Symbols: encArg_1, a_1 Defined Pair Symbols: ENCARG_1, A_1, ENCODE_A_1 Compound Symbols: c1_1, c2_2, c7, c3_1, c8_1, c5_1 ---------------------------------------- (21) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (22) BOUNDS(1, 1) ---------------------------------------- (23) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (24) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: a(x1) -> x1 a(b(x1)) -> b(c(a(x1))) c(a(c(x1))) -> b(a(a(x1))) The (relative) TRS S consists of the following rules: encArg(b(x_1)) -> b(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (25) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence a(b(x1)) ->^+ b(c(a(x1))) gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0]. The pumping substitution is [x1 / b(x1)]. The result substitution is [ ]. ---------------------------------------- (26) Complex Obligation (BEST) ---------------------------------------- (27) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: a(x1) -> x1 a(b(x1)) -> b(c(a(x1))) c(a(c(x1))) -> b(a(a(x1))) The (relative) TRS S consists of the following rules: encArg(b(x_1)) -> b(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (28) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (29) BOUNDS(n^1, INF) ---------------------------------------- (30) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: a(x1) -> x1 a(b(x1)) -> b(c(a(x1))) c(a(c(x1))) -> b(a(a(x1))) The (relative) TRS S consists of the following rules: encArg(b(x_1)) -> b(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: INNERMOST