/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 55 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (12) CdtProblem (13) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 75 ms] (16) CdtProblem (17) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (18) BOUNDS(1, 1) (19) RenamingProof [BOTH BOUNDS(ID, ID), 1 ms] (20) CpxRelTRS (21) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (22) typed CpxTrs (23) OrderProof [LOWER BOUND(ID), 0 ms] (24) typed CpxTrs (25) RewriteLemmaProof [LOWER BOUND(ID), 437 ms] (26) BEST (27) proven lower bound (28) LowerBoundPropagationProof [FINISHED, 0 ms] (29) BOUNDS(n^1, INF) (30) typed CpxTrs (31) RewriteLemmaProof [LOWER BOUND(ID), 102 ms] (32) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: a(x1) -> x1 a(a(x1)) -> a(b(c(a(b(x1))))) c(b(x1)) -> a(c(x1)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(b(x_1)) -> b(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: a(x1) -> x1 a(a(x1)) -> a(b(c(a(b(x1))))) c(b(x1)) -> a(c(x1)) The (relative) TRS S consists of the following rules: encArg(b(x_1)) -> b(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: a(x1) -> x1 a(a(x1)) -> a(b(c(a(b(x1))))) c(b(x1)) -> a(c(x1)) The (relative) TRS S consists of the following rules: encArg(b(x_1)) -> b(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b(z0)) -> b(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) a(z0) -> z0 a(a(z0)) -> a(b(c(a(b(z0))))) c(b(z0)) -> a(c(z0)) Tuples: ENCARG(b(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c3(C(encArg(z0)), ENCARG(z0)) ENCODE_A(z0) -> c4(A(encArg(z0)), ENCARG(z0)) ENCODE_B(z0) -> c5(ENCARG(z0)) ENCODE_C(z0) -> c6(C(encArg(z0)), ENCARG(z0)) A(z0) -> c7 A(a(z0)) -> c8(A(b(c(a(b(z0))))), C(a(b(z0))), A(b(z0))) C(b(z0)) -> c9(A(c(z0)), C(z0)) S tuples: A(z0) -> c7 A(a(z0)) -> c8(A(b(c(a(b(z0))))), C(a(b(z0))), A(b(z0))) C(b(z0)) -> c9(A(c(z0)), C(z0)) K tuples:none Defined Rule Symbols: a_1, c_1, encArg_1, encode_a_1, encode_b_1, encode_c_1 Defined Pair Symbols: ENCARG_1, ENCODE_A_1, ENCODE_B_1, ENCODE_C_1, A_1, C_1 Compound Symbols: c1_1, c2_2, c3_2, c4_2, c5_1, c6_2, c7, c8_3, c9_2 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_B(z0) -> c5(ENCARG(z0)) A(a(z0)) -> c8(A(b(c(a(b(z0))))), C(a(b(z0))), A(b(z0))) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b(z0)) -> b(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) a(z0) -> z0 a(a(z0)) -> a(b(c(a(b(z0))))) c(b(z0)) -> a(c(z0)) Tuples: ENCARG(b(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c3(C(encArg(z0)), ENCARG(z0)) ENCODE_A(z0) -> c4(A(encArg(z0)), ENCARG(z0)) ENCODE_C(z0) -> c6(C(encArg(z0)), ENCARG(z0)) A(z0) -> c7 C(b(z0)) -> c9(A(c(z0)), C(z0)) S tuples: A(z0) -> c7 C(b(z0)) -> c9(A(c(z0)), C(z0)) K tuples:none Defined Rule Symbols: a_1, c_1, encArg_1, encode_a_1, encode_b_1, encode_c_1 Defined Pair Symbols: ENCARG_1, ENCODE_A_1, ENCODE_C_1, A_1, C_1 Compound Symbols: c1_1, c2_2, c3_2, c4_2, c6_2, c7, c9_2 ---------------------------------------- (9) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b(z0)) -> b(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) a(z0) -> z0 a(a(z0)) -> a(b(c(a(b(z0))))) c(b(z0)) -> a(c(z0)) Tuples: ENCARG(b(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c3(C(encArg(z0)), ENCARG(z0)) A(z0) -> c7 C(b(z0)) -> c9(A(c(z0)), C(z0)) ENCODE_A(z0) -> c5(A(encArg(z0))) ENCODE_A(z0) -> c5(ENCARG(z0)) ENCODE_C(z0) -> c5(C(encArg(z0))) ENCODE_C(z0) -> c5(ENCARG(z0)) S tuples: A(z0) -> c7 C(b(z0)) -> c9(A(c(z0)), C(z0)) K tuples:none Defined Rule Symbols: a_1, c_1, encArg_1, encode_a_1, encode_b_1, encode_c_1 Defined Pair Symbols: ENCARG_1, A_1, C_1, ENCODE_A_1, ENCODE_C_1 Compound Symbols: c1_1, c2_2, c3_2, c7, c9_2, c5_1 ---------------------------------------- (11) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_A(z0) -> c5(ENCARG(z0)) ENCODE_C(z0) -> c5(ENCARG(z0)) ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b(z0)) -> b(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) a(z0) -> z0 a(a(z0)) -> a(b(c(a(b(z0))))) c(b(z0)) -> a(c(z0)) Tuples: ENCARG(b(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c3(C(encArg(z0)), ENCARG(z0)) A(z0) -> c7 C(b(z0)) -> c9(A(c(z0)), C(z0)) ENCODE_A(z0) -> c5(A(encArg(z0))) ENCODE_C(z0) -> c5(C(encArg(z0))) S tuples: A(z0) -> c7 C(b(z0)) -> c9(A(c(z0)), C(z0)) K tuples:none Defined Rule Symbols: a_1, c_1, encArg_1, encode_a_1, encode_b_1, encode_c_1 Defined Pair Symbols: ENCARG_1, A_1, C_1, ENCODE_A_1, ENCODE_C_1 Compound Symbols: c1_1, c2_2, c3_2, c7, c9_2, c5_1 ---------------------------------------- (13) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) encode_c(z0) -> c(encArg(z0)) a(a(z0)) -> a(b(c(a(b(z0))))) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b(z0)) -> b(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) a(z0) -> z0 c(b(z0)) -> a(c(z0)) Tuples: ENCARG(b(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c3(C(encArg(z0)), ENCARG(z0)) A(z0) -> c7 C(b(z0)) -> c9(A(c(z0)), C(z0)) ENCODE_A(z0) -> c5(A(encArg(z0))) ENCODE_C(z0) -> c5(C(encArg(z0))) S tuples: A(z0) -> c7 C(b(z0)) -> c9(A(c(z0)), C(z0)) K tuples:none Defined Rule Symbols: encArg_1, a_1, c_1 Defined Pair Symbols: ENCARG_1, A_1, C_1, ENCODE_A_1, ENCODE_C_1 Compound Symbols: c1_1, c2_2, c3_2, c7, c9_2, c5_1 ---------------------------------------- (15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. A(z0) -> c7 C(b(z0)) -> c9(A(c(z0)), C(z0)) We considered the (Usable) Rules: a(z0) -> z0 encArg(b(z0)) -> b(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) c(b(z0)) -> a(c(z0)) And the Tuples: ENCARG(b(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c3(C(encArg(z0)), ENCARG(z0)) A(z0) -> c7 C(b(z0)) -> c9(A(c(z0)), C(z0)) ENCODE_A(z0) -> c5(A(encArg(z0))) ENCODE_C(z0) -> c5(C(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(A(x_1)) = [1] POL(C(x_1)) = [2]x_1 POL(ENCARG(x_1)) = x_1^2 POL(ENCODE_A(x_1)) = [1] + [2]x_1 + x_1^2 POL(ENCODE_C(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(a(x_1)) = x_1 POL(b(x_1)) = [2] + x_1 POL(c(x_1)) = [2] + x_1 POL(c1(x_1)) = x_1 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c5(x_1)) = x_1 POL(c7) = 0 POL(c9(x_1, x_2)) = x_1 + x_2 POL(cons_a(x_1)) = [2] + x_1 POL(cons_c(x_1)) = [2] + x_1 POL(encArg(x_1)) = x_1 ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b(z0)) -> b(encArg(z0)) encArg(cons_a(z0)) -> a(encArg(z0)) encArg(cons_c(z0)) -> c(encArg(z0)) a(z0) -> z0 c(b(z0)) -> a(c(z0)) Tuples: ENCARG(b(z0)) -> c1(ENCARG(z0)) ENCARG(cons_a(z0)) -> c2(A(encArg(z0)), ENCARG(z0)) ENCARG(cons_c(z0)) -> c3(C(encArg(z0)), ENCARG(z0)) A(z0) -> c7 C(b(z0)) -> c9(A(c(z0)), C(z0)) ENCODE_A(z0) -> c5(A(encArg(z0))) ENCODE_C(z0) -> c5(C(encArg(z0))) S tuples:none K tuples: A(z0) -> c7 C(b(z0)) -> c9(A(c(z0)), C(z0)) Defined Rule Symbols: encArg_1, a_1, c_1 Defined Pair Symbols: ENCARG_1, A_1, C_1, ENCODE_A_1, ENCODE_C_1 Compound Symbols: c1_1, c2_2, c3_2, c7, c9_2, c5_1 ---------------------------------------- (17) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (18) BOUNDS(1, 1) ---------------------------------------- (19) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (20) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a(x1) -> x1 a(a(x1)) -> a(b(c(a(b(x1))))) c(b(x1)) -> a(c(x1)) The (relative) TRS S consists of the following rules: encArg(b(x_1)) -> b(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (21) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (22) Obligation: Innermost TRS: Rules: a(x1) -> x1 a(a(x1)) -> a(b(c(a(b(x1))))) c(b(x1)) -> a(c(x1)) encArg(b(x_1)) -> b(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Types: a :: b:cons_a:cons_c -> b:cons_a:cons_c b :: b:cons_a:cons_c -> b:cons_a:cons_c c :: b:cons_a:cons_c -> b:cons_a:cons_c encArg :: b:cons_a:cons_c -> b:cons_a:cons_c cons_a :: b:cons_a:cons_c -> b:cons_a:cons_c cons_c :: b:cons_a:cons_c -> b:cons_a:cons_c encode_a :: b:cons_a:cons_c -> b:cons_a:cons_c encode_b :: b:cons_a:cons_c -> b:cons_a:cons_c encode_c :: b:cons_a:cons_c -> b:cons_a:cons_c hole_b:cons_a:cons_c1_0 :: b:cons_a:cons_c gen_b:cons_a:cons_c2_0 :: Nat -> b:cons_a:cons_c ---------------------------------------- (23) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: a, c, encArg They will be analysed ascendingly in the following order: a = c a < encArg c < encArg ---------------------------------------- (24) Obligation: Innermost TRS: Rules: a(x1) -> x1 a(a(x1)) -> a(b(c(a(b(x1))))) c(b(x1)) -> a(c(x1)) encArg(b(x_1)) -> b(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Types: a :: b:cons_a:cons_c -> b:cons_a:cons_c b :: b:cons_a:cons_c -> b:cons_a:cons_c c :: b:cons_a:cons_c -> b:cons_a:cons_c encArg :: b:cons_a:cons_c -> b:cons_a:cons_c cons_a :: b:cons_a:cons_c -> b:cons_a:cons_c cons_c :: b:cons_a:cons_c -> b:cons_a:cons_c encode_a :: b:cons_a:cons_c -> b:cons_a:cons_c encode_b :: b:cons_a:cons_c -> b:cons_a:cons_c encode_c :: b:cons_a:cons_c -> b:cons_a:cons_c hole_b:cons_a:cons_c1_0 :: b:cons_a:cons_c gen_b:cons_a:cons_c2_0 :: Nat -> b:cons_a:cons_c Generator Equations: gen_b:cons_a:cons_c2_0(0) <=> hole_b:cons_a:cons_c1_0 gen_b:cons_a:cons_c2_0(+(x, 1)) <=> b(gen_b:cons_a:cons_c2_0(x)) The following defined symbols remain to be analysed: c, a, encArg They will be analysed ascendingly in the following order: a = c a < encArg c < encArg ---------------------------------------- (25) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: c(gen_b:cons_a:cons_c2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Induction Base: c(gen_b:cons_a:cons_c2_0(+(1, 0))) Induction Step: c(gen_b:cons_a:cons_c2_0(+(1, +(n4_0, 1)))) ->_R^Omega(1) a(c(gen_b:cons_a:cons_c2_0(+(1, n4_0)))) ->_IH a(*3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (26) Complex Obligation (BEST) ---------------------------------------- (27) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: a(x1) -> x1 a(a(x1)) -> a(b(c(a(b(x1))))) c(b(x1)) -> a(c(x1)) encArg(b(x_1)) -> b(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Types: a :: b:cons_a:cons_c -> b:cons_a:cons_c b :: b:cons_a:cons_c -> b:cons_a:cons_c c :: b:cons_a:cons_c -> b:cons_a:cons_c encArg :: b:cons_a:cons_c -> b:cons_a:cons_c cons_a :: b:cons_a:cons_c -> b:cons_a:cons_c cons_c :: b:cons_a:cons_c -> b:cons_a:cons_c encode_a :: b:cons_a:cons_c -> b:cons_a:cons_c encode_b :: b:cons_a:cons_c -> b:cons_a:cons_c encode_c :: b:cons_a:cons_c -> b:cons_a:cons_c hole_b:cons_a:cons_c1_0 :: b:cons_a:cons_c gen_b:cons_a:cons_c2_0 :: Nat -> b:cons_a:cons_c Generator Equations: gen_b:cons_a:cons_c2_0(0) <=> hole_b:cons_a:cons_c1_0 gen_b:cons_a:cons_c2_0(+(x, 1)) <=> b(gen_b:cons_a:cons_c2_0(x)) The following defined symbols remain to be analysed: c, a, encArg They will be analysed ascendingly in the following order: a = c a < encArg c < encArg ---------------------------------------- (28) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (29) BOUNDS(n^1, INF) ---------------------------------------- (30) Obligation: Innermost TRS: Rules: a(x1) -> x1 a(a(x1)) -> a(b(c(a(b(x1))))) c(b(x1)) -> a(c(x1)) encArg(b(x_1)) -> b(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_c(x_1)) -> c(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Types: a :: b:cons_a:cons_c -> b:cons_a:cons_c b :: b:cons_a:cons_c -> b:cons_a:cons_c c :: b:cons_a:cons_c -> b:cons_a:cons_c encArg :: b:cons_a:cons_c -> b:cons_a:cons_c cons_a :: b:cons_a:cons_c -> b:cons_a:cons_c cons_c :: b:cons_a:cons_c -> b:cons_a:cons_c encode_a :: b:cons_a:cons_c -> b:cons_a:cons_c encode_b :: b:cons_a:cons_c -> b:cons_a:cons_c encode_c :: b:cons_a:cons_c -> b:cons_a:cons_c hole_b:cons_a:cons_c1_0 :: b:cons_a:cons_c gen_b:cons_a:cons_c2_0 :: Nat -> b:cons_a:cons_c Lemmas: c(gen_b:cons_a:cons_c2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Generator Equations: gen_b:cons_a:cons_c2_0(0) <=> hole_b:cons_a:cons_c1_0 gen_b:cons_a:cons_c2_0(+(x, 1)) <=> b(gen_b:cons_a:cons_c2_0(x)) The following defined symbols remain to be analysed: a, encArg They will be analysed ascendingly in the following order: a = c a < encArg c < encArg ---------------------------------------- (31) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_b:cons_a:cons_c2_0(+(1, n227_0))) -> *3_0, rt in Omega(0) Induction Base: encArg(gen_b:cons_a:cons_c2_0(+(1, 0))) Induction Step: encArg(gen_b:cons_a:cons_c2_0(+(1, +(n227_0, 1)))) ->_R^Omega(0) b(encArg(gen_b:cons_a:cons_c2_0(+(1, n227_0)))) ->_IH b(*3_0) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (32) BOUNDS(1, INF)