/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 218 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldf(x, nil) -> x foldf(x, cons(y, z)) -> f(foldf(x, z), y) f(t, x) -> f'(t, g(x)) f'(triple(a, b, c), C) -> triple(a, b, cons(C, c)) f'(triple(a, b, c), B) -> f(triple(a, b, c), A) f'(triple(a, b, c), A) -> f''(foldf(triple(cons(A, a), nil, c), b)) f''(triple(a, b, c)) -> foldf(triple(a, b, nil), c) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(A) -> A encArg(B) -> B encArg(C) -> C encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(triple(x_1, x_2, x_3)) -> triple(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_foldf(x_1, x_2)) -> foldf(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_f'(x_1, x_2)) -> f'(encArg(x_1), encArg(x_2)) encArg(cons_f''(x_1)) -> f''(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_A -> A encode_B -> B encode_C -> C encode_foldf(x_1, x_2) -> foldf(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_f'(x_1, x_2) -> f'(encArg(x_1), encArg(x_2)) encode_triple(x_1, x_2, x_3) -> triple(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f''(x_1) -> f''(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldf(x, nil) -> x foldf(x, cons(y, z)) -> f(foldf(x, z), y) f(t, x) -> f'(t, g(x)) f'(triple(a, b, c), C) -> triple(a, b, cons(C, c)) f'(triple(a, b, c), B) -> f(triple(a, b, c), A) f'(triple(a, b, c), A) -> f''(foldf(triple(cons(A, a), nil, c), b)) f''(triple(a, b, c)) -> foldf(triple(a, b, nil), c) The (relative) TRS S consists of the following rules: encArg(A) -> A encArg(B) -> B encArg(C) -> C encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(triple(x_1, x_2, x_3)) -> triple(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_foldf(x_1, x_2)) -> foldf(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_f'(x_1, x_2)) -> f'(encArg(x_1), encArg(x_2)) encArg(cons_f''(x_1)) -> f''(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_A -> A encode_B -> B encode_C -> C encode_foldf(x_1, x_2) -> foldf(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_f'(x_1, x_2) -> f'(encArg(x_1), encArg(x_2)) encode_triple(x_1, x_2, x_3) -> triple(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f''(x_1) -> f''(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldf(x, nil) -> x foldf(x, cons(y, z)) -> f(foldf(x, z), y) f(t, x) -> f'(t, g(x)) f'(triple(a, b, c), C) -> triple(a, b, cons(C, c)) f'(triple(a, b, c), B) -> f(triple(a, b, c), A) f'(triple(a, b, c), A) -> f''(foldf(triple(cons(A, a), nil, c), b)) f''(triple(a, b, c)) -> foldf(triple(a, b, nil), c) The (relative) TRS S consists of the following rules: encArg(A) -> A encArg(B) -> B encArg(C) -> C encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(triple(x_1, x_2, x_3)) -> triple(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_foldf(x_1, x_2)) -> foldf(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_f'(x_1, x_2)) -> f'(encArg(x_1), encArg(x_2)) encArg(cons_f''(x_1)) -> f''(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_A -> A encode_B -> B encode_C -> C encode_foldf(x_1, x_2) -> foldf(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_f'(x_1, x_2) -> f'(encArg(x_1), encArg(x_2)) encode_triple(x_1, x_2, x_3) -> triple(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f''(x_1) -> f''(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldf(x, nil) -> x foldf(x, cons(y, z)) -> f(foldf(x, z), y) f(t, x) -> f'(t, g(x)) f'(triple(a, b, c), C) -> triple(a, b, cons(C, c)) f'(triple(a, b, c), B) -> f(triple(a, b, c), A) f'(triple(a, b, c), A) -> f''(foldf(triple(cons(A, a), nil, c), b)) f''(triple(a, b, c)) -> foldf(triple(a, b, nil), c) The (relative) TRS S consists of the following rules: encArg(A) -> A encArg(B) -> B encArg(C) -> C encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(triple(x_1, x_2, x_3)) -> triple(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_foldf(x_1, x_2)) -> foldf(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_f'(x_1, x_2)) -> f'(encArg(x_1), encArg(x_2)) encArg(cons_f''(x_1)) -> f''(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_A -> A encode_B -> B encode_C -> C encode_foldf(x_1, x_2) -> foldf(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_f'(x_1, x_2) -> f'(encArg(x_1), encArg(x_2)) encode_triple(x_1, x_2, x_3) -> triple(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f''(x_1) -> f''(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence foldf(x, cons(y, z)) ->^+ f(foldf(x, z), y) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [z / cons(y, z)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldf(x, nil) -> x foldf(x, cons(y, z)) -> f(foldf(x, z), y) f(t, x) -> f'(t, g(x)) f'(triple(a, b, c), C) -> triple(a, b, cons(C, c)) f'(triple(a, b, c), B) -> f(triple(a, b, c), A) f'(triple(a, b, c), A) -> f''(foldf(triple(cons(A, a), nil, c), b)) f''(triple(a, b, c)) -> foldf(triple(a, b, nil), c) The (relative) TRS S consists of the following rules: encArg(A) -> A encArg(B) -> B encArg(C) -> C encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(triple(x_1, x_2, x_3)) -> triple(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_foldf(x_1, x_2)) -> foldf(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_f'(x_1, x_2)) -> f'(encArg(x_1), encArg(x_2)) encArg(cons_f''(x_1)) -> f''(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_A -> A encode_B -> B encode_C -> C encode_foldf(x_1, x_2) -> foldf(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_f'(x_1, x_2) -> f'(encArg(x_1), encArg(x_2)) encode_triple(x_1, x_2, x_3) -> triple(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f''(x_1) -> f''(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldf(x, nil) -> x foldf(x, cons(y, z)) -> f(foldf(x, z), y) f(t, x) -> f'(t, g(x)) f'(triple(a, b, c), C) -> triple(a, b, cons(C, c)) f'(triple(a, b, c), B) -> f(triple(a, b, c), A) f'(triple(a, b, c), A) -> f''(foldf(triple(cons(A, a), nil, c), b)) f''(triple(a, b, c)) -> foldf(triple(a, b, nil), c) The (relative) TRS S consists of the following rules: encArg(A) -> A encArg(B) -> B encArg(C) -> C encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(triple(x_1, x_2, x_3)) -> triple(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_foldf(x_1, x_2)) -> foldf(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_f'(x_1, x_2)) -> f'(encArg(x_1), encArg(x_2)) encArg(cons_f''(x_1)) -> f''(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_A -> A encode_B -> B encode_C -> C encode_foldf(x_1, x_2) -> foldf(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_f'(x_1, x_2) -> f'(encArg(x_1), encArg(x_2)) encode_triple(x_1, x_2, x_3) -> triple(encArg(x_1), encArg(x_2), encArg(x_3)) encode_f''(x_1) -> f''(encArg(x_1)) Rewrite Strategy: INNERMOST