/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 214 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: ack_in(0, n) -> ack_out(s(n)) ack_in(s(m), 0) -> u11(ack_in(m, s(0))) u11(ack_out(n)) -> ack_out(n) ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m) u21(ack_out(n), m) -> u22(ack_in(m, n)) u22(ack_out(n)) -> ack_out(n) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(ack_out(x_1)) -> ack_out(encArg(x_1)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_ack_in(x_1, x_2)) -> ack_in(encArg(x_1), encArg(x_2)) encArg(cons_u11(x_1)) -> u11(encArg(x_1)) encArg(cons_u21(x_1, x_2)) -> u21(encArg(x_1), encArg(x_2)) encArg(cons_u22(x_1)) -> u22(encArg(x_1)) encode_ack_in(x_1, x_2) -> ack_in(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_ack_out(x_1) -> ack_out(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_u11(x_1) -> u11(encArg(x_1)) encode_u21(x_1, x_2) -> u21(encArg(x_1), encArg(x_2)) encode_u22(x_1) -> u22(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: ack_in(0, n) -> ack_out(s(n)) ack_in(s(m), 0) -> u11(ack_in(m, s(0))) u11(ack_out(n)) -> ack_out(n) ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m) u21(ack_out(n), m) -> u22(ack_in(m, n)) u22(ack_out(n)) -> ack_out(n) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(ack_out(x_1)) -> ack_out(encArg(x_1)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_ack_in(x_1, x_2)) -> ack_in(encArg(x_1), encArg(x_2)) encArg(cons_u11(x_1)) -> u11(encArg(x_1)) encArg(cons_u21(x_1, x_2)) -> u21(encArg(x_1), encArg(x_2)) encArg(cons_u22(x_1)) -> u22(encArg(x_1)) encode_ack_in(x_1, x_2) -> ack_in(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_ack_out(x_1) -> ack_out(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_u11(x_1) -> u11(encArg(x_1)) encode_u21(x_1, x_2) -> u21(encArg(x_1), encArg(x_2)) encode_u22(x_1) -> u22(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: ack_in(0, n) -> ack_out(s(n)) ack_in(s(m), 0) -> u11(ack_in(m, s(0))) u11(ack_out(n)) -> ack_out(n) ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m) u21(ack_out(n), m) -> u22(ack_in(m, n)) u22(ack_out(n)) -> ack_out(n) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(ack_out(x_1)) -> ack_out(encArg(x_1)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_ack_in(x_1, x_2)) -> ack_in(encArg(x_1), encArg(x_2)) encArg(cons_u11(x_1)) -> u11(encArg(x_1)) encArg(cons_u21(x_1, x_2)) -> u21(encArg(x_1), encArg(x_2)) encArg(cons_u22(x_1)) -> u22(encArg(x_1)) encode_ack_in(x_1, x_2) -> ack_in(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_ack_out(x_1) -> ack_out(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_u11(x_1) -> u11(encArg(x_1)) encode_u21(x_1, x_2) -> u21(encArg(x_1), encArg(x_2)) encode_u22(x_1) -> u22(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: ack_in(0, n) -> ack_out(s(n)) ack_in(s(m), 0) -> u11(ack_in(m, s(0))) u11(ack_out(n)) -> ack_out(n) ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m) u21(ack_out(n), m) -> u22(ack_in(m, n)) u22(ack_out(n)) -> ack_out(n) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(ack_out(x_1)) -> ack_out(encArg(x_1)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_ack_in(x_1, x_2)) -> ack_in(encArg(x_1), encArg(x_2)) encArg(cons_u11(x_1)) -> u11(encArg(x_1)) encArg(cons_u21(x_1, x_2)) -> u21(encArg(x_1), encArg(x_2)) encArg(cons_u22(x_1)) -> u22(encArg(x_1)) encode_ack_in(x_1, x_2) -> ack_in(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_ack_out(x_1) -> ack_out(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_u11(x_1) -> u11(encArg(x_1)) encode_u21(x_1, x_2) -> u21(encArg(x_1), encArg(x_2)) encode_u22(x_1) -> u22(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence ack_in(s(m), s(n)) ->^+ u21(ack_in(s(m), n), m) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [n / s(n)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: ack_in(0, n) -> ack_out(s(n)) ack_in(s(m), 0) -> u11(ack_in(m, s(0))) u11(ack_out(n)) -> ack_out(n) ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m) u21(ack_out(n), m) -> u22(ack_in(m, n)) u22(ack_out(n)) -> ack_out(n) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(ack_out(x_1)) -> ack_out(encArg(x_1)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_ack_in(x_1, x_2)) -> ack_in(encArg(x_1), encArg(x_2)) encArg(cons_u11(x_1)) -> u11(encArg(x_1)) encArg(cons_u21(x_1, x_2)) -> u21(encArg(x_1), encArg(x_2)) encArg(cons_u22(x_1)) -> u22(encArg(x_1)) encode_ack_in(x_1, x_2) -> ack_in(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_ack_out(x_1) -> ack_out(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_u11(x_1) -> u11(encArg(x_1)) encode_u21(x_1, x_2) -> u21(encArg(x_1), encArg(x_2)) encode_u22(x_1) -> u22(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: ack_in(0, n) -> ack_out(s(n)) ack_in(s(m), 0) -> u11(ack_in(m, s(0))) u11(ack_out(n)) -> ack_out(n) ack_in(s(m), s(n)) -> u21(ack_in(s(m), n), m) u21(ack_out(n), m) -> u22(ack_in(m, n)) u22(ack_out(n)) -> ack_out(n) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(ack_out(x_1)) -> ack_out(encArg(x_1)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_ack_in(x_1, x_2)) -> ack_in(encArg(x_1), encArg(x_2)) encArg(cons_u11(x_1)) -> u11(encArg(x_1)) encArg(cons_u21(x_1, x_2)) -> u21(encArg(x_1), encArg(x_2)) encArg(cons_u22(x_1)) -> u22(encArg(x_1)) encode_ack_in(x_1, x_2) -> ack_in(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_ack_out(x_1) -> ack_out(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_u11(x_1) -> u11(encArg(x_1)) encode_u21(x_1, x_2) -> u21(encArg(x_1), encArg(x_2)) encode_u22(x_1) -> u22(encArg(x_1)) Rewrite Strategy: INNERMOST