/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(INF, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 342 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) InfiniteLowerBoundProof [FINISHED, 30 ms] (8) BOUNDS(INF, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: is_empty(nil) -> true is_empty(cons(x, l)) -> false hd(cons(x, l)) -> x tl(cons(x, l)) -> cons(x, l) append(l1, l2) -> ifappend(l1, l2, is_empty(l1)) ifappend(l1, l2, true) -> l2 ifappend(l1, l2, false) -> cons(hd(l1), append(tl(l1), l2)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(nil) -> nil encArg(true) -> true encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(false) -> false encArg(cons_is_empty(x_1)) -> is_empty(encArg(x_1)) encArg(cons_hd(x_1)) -> hd(encArg(x_1)) encArg(cons_tl(x_1)) -> tl(encArg(x_1)) encArg(cons_append(x_1, x_2)) -> append(encArg(x_1), encArg(x_2)) encArg(cons_ifappend(x_1, x_2, x_3)) -> ifappend(encArg(x_1), encArg(x_2), encArg(x_3)) encode_is_empty(x_1) -> is_empty(encArg(x_1)) encode_nil -> nil encode_true -> true encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_false -> false encode_hd(x_1) -> hd(encArg(x_1)) encode_tl(x_1) -> tl(encArg(x_1)) encode_append(x_1, x_2) -> append(encArg(x_1), encArg(x_2)) encode_ifappend(x_1, x_2, x_3) -> ifappend(encArg(x_1), encArg(x_2), encArg(x_3)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: is_empty(nil) -> true is_empty(cons(x, l)) -> false hd(cons(x, l)) -> x tl(cons(x, l)) -> cons(x, l) append(l1, l2) -> ifappend(l1, l2, is_empty(l1)) ifappend(l1, l2, true) -> l2 ifappend(l1, l2, false) -> cons(hd(l1), append(tl(l1), l2)) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(true) -> true encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(false) -> false encArg(cons_is_empty(x_1)) -> is_empty(encArg(x_1)) encArg(cons_hd(x_1)) -> hd(encArg(x_1)) encArg(cons_tl(x_1)) -> tl(encArg(x_1)) encArg(cons_append(x_1, x_2)) -> append(encArg(x_1), encArg(x_2)) encArg(cons_ifappend(x_1, x_2, x_3)) -> ifappend(encArg(x_1), encArg(x_2), encArg(x_3)) encode_is_empty(x_1) -> is_empty(encArg(x_1)) encode_nil -> nil encode_true -> true encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_false -> false encode_hd(x_1) -> hd(encArg(x_1)) encode_tl(x_1) -> tl(encArg(x_1)) encode_append(x_1, x_2) -> append(encArg(x_1), encArg(x_2)) encode_ifappend(x_1, x_2, x_3) -> ifappend(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: is_empty(nil) -> true is_empty(cons(x, l)) -> false hd(cons(x, l)) -> x tl(cons(x, l)) -> cons(x, l) append(l1, l2) -> ifappend(l1, l2, is_empty(l1)) ifappend(l1, l2, true) -> l2 ifappend(l1, l2, false) -> cons(hd(l1), append(tl(l1), l2)) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(true) -> true encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(false) -> false encArg(cons_is_empty(x_1)) -> is_empty(encArg(x_1)) encArg(cons_hd(x_1)) -> hd(encArg(x_1)) encArg(cons_tl(x_1)) -> tl(encArg(x_1)) encArg(cons_append(x_1, x_2)) -> append(encArg(x_1), encArg(x_2)) encArg(cons_ifappend(x_1, x_2, x_3)) -> ifappend(encArg(x_1), encArg(x_2), encArg(x_3)) encode_is_empty(x_1) -> is_empty(encArg(x_1)) encode_nil -> nil encode_true -> true encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_false -> false encode_hd(x_1) -> hd(encArg(x_1)) encode_tl(x_1) -> tl(encArg(x_1)) encode_append(x_1, x_2) -> append(encArg(x_1), encArg(x_2)) encode_ifappend(x_1, x_2, x_3) -> ifappend(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: is_empty(nil) -> true is_empty(cons(x, l)) -> false hd(cons(x, l)) -> x tl(cons(x, l)) -> cons(x, l) append(l1, l2) -> ifappend(l1, l2, is_empty(l1)) ifappend(l1, l2, true) -> l2 ifappend(l1, l2, false) -> cons(hd(l1), append(tl(l1), l2)) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(true) -> true encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(false) -> false encArg(cons_is_empty(x_1)) -> is_empty(encArg(x_1)) encArg(cons_hd(x_1)) -> hd(encArg(x_1)) encArg(cons_tl(x_1)) -> tl(encArg(x_1)) encArg(cons_append(x_1, x_2)) -> append(encArg(x_1), encArg(x_2)) encArg(cons_ifappend(x_1, x_2, x_3)) -> ifappend(encArg(x_1), encArg(x_2), encArg(x_3)) encode_is_empty(x_1) -> is_empty(encArg(x_1)) encode_nil -> nil encode_true -> true encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_false -> false encode_hd(x_1) -> hd(encArg(x_1)) encode_tl(x_1) -> tl(encArg(x_1)) encode_append(x_1, x_2) -> append(encArg(x_1), encArg(x_2)) encode_ifappend(x_1, x_2, x_3) -> ifappend(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) InfiniteLowerBoundProof (FINISHED) The following loop proves infinite runtime complexity: The rewrite sequence ifappend(cons(x1_0, l2_0), l2, false) ->^+ cons(hd(cons(x1_0, l2_0)), ifappend(cons(x1_0, l2_0), l2, false)) gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. The pumping substitution is [ ]. The result substitution is [ ]. ---------------------------------------- (8) BOUNDS(INF, INF)