/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 254 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: 0(#) -> # +(#, x) -> x +(x, #) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(0(x), j(y)) -> j(+(x, y)) +(j(x), 0(y)) -> j(+(x, y)) +(1(x), 1(y)) -> j(+(+(x, y), 1(#))) +(j(x), j(y)) -> 1(+(+(x, y), j(#))) +(1(x), j(y)) -> 0(+(x, y)) +(j(x), 1(y)) -> 0(+(x, y)) +(+(x, y), z) -> +(x, +(y, z)) opp(#) -> # opp(0(x)) -> 0(opp(x)) opp(1(x)) -> j(opp(x)) opp(j(x)) -> 1(opp(x)) -(x, y) -> +(x, opp(y)) *(#, x) -> # *(0(x), y) -> 0(*(x, y)) *(1(x), y) -> +(0(*(x, y)), y) *(j(x), y) -> -(0(*(x, y)), y) *(*(x, y), z) -> *(x, *(y, z)) *(+(x, y), z) -> +(*(x, z), *(y, z)) *(x, +(y, z)) -> +(*(x, y), *(x, z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(#) -> # encArg(1(x_1)) -> 1(encArg(x_1)) encArg(j(x_1)) -> j(encArg(x_1)) encArg(cons_0(x_1)) -> 0(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_opp(x_1)) -> opp(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encode_0(x_1) -> 0(encArg(x_1)) encode_# -> # encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_1(x_1) -> 1(encArg(x_1)) encode_j(x_1) -> j(encArg(x_1)) encode_opp(x_1) -> opp(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: 0(#) -> # +(#, x) -> x +(x, #) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(0(x), j(y)) -> j(+(x, y)) +(j(x), 0(y)) -> j(+(x, y)) +(1(x), 1(y)) -> j(+(+(x, y), 1(#))) +(j(x), j(y)) -> 1(+(+(x, y), j(#))) +(1(x), j(y)) -> 0(+(x, y)) +(j(x), 1(y)) -> 0(+(x, y)) +(+(x, y), z) -> +(x, +(y, z)) opp(#) -> # opp(0(x)) -> 0(opp(x)) opp(1(x)) -> j(opp(x)) opp(j(x)) -> 1(opp(x)) -(x, y) -> +(x, opp(y)) *(#, x) -> # *(0(x), y) -> 0(*(x, y)) *(1(x), y) -> +(0(*(x, y)), y) *(j(x), y) -> -(0(*(x, y)), y) *(*(x, y), z) -> *(x, *(y, z)) *(+(x, y), z) -> +(*(x, z), *(y, z)) *(x, +(y, z)) -> +(*(x, y), *(x, z)) The (relative) TRS S consists of the following rules: encArg(#) -> # encArg(1(x_1)) -> 1(encArg(x_1)) encArg(j(x_1)) -> j(encArg(x_1)) encArg(cons_0(x_1)) -> 0(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_opp(x_1)) -> opp(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encode_0(x_1) -> 0(encArg(x_1)) encode_# -> # encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_1(x_1) -> 1(encArg(x_1)) encode_j(x_1) -> j(encArg(x_1)) encode_opp(x_1) -> opp(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: 0(#) -> # +(#, x) -> x +(x, #) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(0(x), j(y)) -> j(+(x, y)) +(j(x), 0(y)) -> j(+(x, y)) +(1(x), 1(y)) -> j(+(+(x, y), 1(#))) +(j(x), j(y)) -> 1(+(+(x, y), j(#))) +(1(x), j(y)) -> 0(+(x, y)) +(j(x), 1(y)) -> 0(+(x, y)) +(+(x, y), z) -> +(x, +(y, z)) opp(#) -> # opp(0(x)) -> 0(opp(x)) opp(1(x)) -> j(opp(x)) opp(j(x)) -> 1(opp(x)) -(x, y) -> +(x, opp(y)) *(#, x) -> # *(0(x), y) -> 0(*(x, y)) *(1(x), y) -> +(0(*(x, y)), y) *(j(x), y) -> -(0(*(x, y)), y) *(*(x, y), z) -> *(x, *(y, z)) *(+(x, y), z) -> +(*(x, z), *(y, z)) *(x, +(y, z)) -> +(*(x, y), *(x, z)) The (relative) TRS S consists of the following rules: encArg(#) -> # encArg(1(x_1)) -> 1(encArg(x_1)) encArg(j(x_1)) -> j(encArg(x_1)) encArg(cons_0(x_1)) -> 0(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_opp(x_1)) -> opp(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encode_0(x_1) -> 0(encArg(x_1)) encode_# -> # encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_1(x_1) -> 1(encArg(x_1)) encode_j(x_1) -> j(encArg(x_1)) encode_opp(x_1) -> opp(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: 0(#) -> # +(#, x) -> x +(x, #) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(0(x), j(y)) -> j(+(x, y)) +(j(x), 0(y)) -> j(+(x, y)) +(1(x), 1(y)) -> j(+(+(x, y), 1(#))) +(j(x), j(y)) -> 1(+(+(x, y), j(#))) +(1(x), j(y)) -> 0(+(x, y)) +(j(x), 1(y)) -> 0(+(x, y)) +(+(x, y), z) -> +(x, +(y, z)) opp(#) -> # opp(0(x)) -> 0(opp(x)) opp(1(x)) -> j(opp(x)) opp(j(x)) -> 1(opp(x)) -(x, y) -> +(x, opp(y)) *(#, x) -> # *(0(x), y) -> 0(*(x, y)) *(1(x), y) -> +(0(*(x, y)), y) *(j(x), y) -> -(0(*(x, y)), y) *(*(x, y), z) -> *(x, *(y, z)) *(+(x, y), z) -> +(*(x, z), *(y, z)) *(x, +(y, z)) -> +(*(x, y), *(x, z)) The (relative) TRS S consists of the following rules: encArg(#) -> # encArg(1(x_1)) -> 1(encArg(x_1)) encArg(j(x_1)) -> j(encArg(x_1)) encArg(cons_0(x_1)) -> 0(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_opp(x_1)) -> opp(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encode_0(x_1) -> 0(encArg(x_1)) encode_# -> # encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_1(x_1) -> 1(encArg(x_1)) encode_j(x_1) -> j(encArg(x_1)) encode_opp(x_1) -> opp(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence +(j(x), j(y)) ->^+ 1(+(+(x, y), j(#))) gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0]. The pumping substitution is [x / j(x), y / j(y)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: 0(#) -> # +(#, x) -> x +(x, #) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(0(x), j(y)) -> j(+(x, y)) +(j(x), 0(y)) -> j(+(x, y)) +(1(x), 1(y)) -> j(+(+(x, y), 1(#))) +(j(x), j(y)) -> 1(+(+(x, y), j(#))) +(1(x), j(y)) -> 0(+(x, y)) +(j(x), 1(y)) -> 0(+(x, y)) +(+(x, y), z) -> +(x, +(y, z)) opp(#) -> # opp(0(x)) -> 0(opp(x)) opp(1(x)) -> j(opp(x)) opp(j(x)) -> 1(opp(x)) -(x, y) -> +(x, opp(y)) *(#, x) -> # *(0(x), y) -> 0(*(x, y)) *(1(x), y) -> +(0(*(x, y)), y) *(j(x), y) -> -(0(*(x, y)), y) *(*(x, y), z) -> *(x, *(y, z)) *(+(x, y), z) -> +(*(x, z), *(y, z)) *(x, +(y, z)) -> +(*(x, y), *(x, z)) The (relative) TRS S consists of the following rules: encArg(#) -> # encArg(1(x_1)) -> 1(encArg(x_1)) encArg(j(x_1)) -> j(encArg(x_1)) encArg(cons_0(x_1)) -> 0(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_opp(x_1)) -> opp(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encode_0(x_1) -> 0(encArg(x_1)) encode_# -> # encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_1(x_1) -> 1(encArg(x_1)) encode_j(x_1) -> j(encArg(x_1)) encode_opp(x_1) -> opp(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: 0(#) -> # +(#, x) -> x +(x, #) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(0(x), j(y)) -> j(+(x, y)) +(j(x), 0(y)) -> j(+(x, y)) +(1(x), 1(y)) -> j(+(+(x, y), 1(#))) +(j(x), j(y)) -> 1(+(+(x, y), j(#))) +(1(x), j(y)) -> 0(+(x, y)) +(j(x), 1(y)) -> 0(+(x, y)) +(+(x, y), z) -> +(x, +(y, z)) opp(#) -> # opp(0(x)) -> 0(opp(x)) opp(1(x)) -> j(opp(x)) opp(j(x)) -> 1(opp(x)) -(x, y) -> +(x, opp(y)) *(#, x) -> # *(0(x), y) -> 0(*(x, y)) *(1(x), y) -> +(0(*(x, y)), y) *(j(x), y) -> -(0(*(x, y)), y) *(*(x, y), z) -> *(x, *(y, z)) *(+(x, y), z) -> +(*(x, z), *(y, z)) *(x, +(y, z)) -> +(*(x, y), *(x, z)) The (relative) TRS S consists of the following rules: encArg(#) -> # encArg(1(x_1)) -> 1(encArg(x_1)) encArg(j(x_1)) -> j(encArg(x_1)) encArg(cons_0(x_1)) -> 0(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_opp(x_1)) -> opp(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encode_0(x_1) -> 0(encArg(x_1)) encode_# -> # encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_1(x_1) -> 1(encArg(x_1)) encode_j(x_1) -> j(encArg(x_1)) encode_opp(x_1) -> opp(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST