/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 788 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 5 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(+(x, y), z) -> +(x, +(y, z)) -(#, x) -> # -(x, #) -> x -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(true) -> false not(false) -> true if(true, x, y) -> x if(false, x, y) -> y eq(#, #) -> true eq(#, 1(y)) -> false eq(1(x), #) -> false eq(#, 0(y)) -> eq(#, y) eq(0(x), #) -> eq(x, #) eq(1(x), 1(y)) -> eq(x, y) eq(0(x), 1(y)) -> false eq(1(x), 0(y)) -> false eq(0(x), 0(y)) -> eq(x, y) ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 0(x)) -> ge(#, x) ge(#, 1(x)) -> false log(x) -> -(log'(x), 1(#)) log'(#) -> # log'(1(x)) -> +(log'(x), 1(#)) log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #) *(#, x) -> # *(0(x), y) -> 0(*(x, y)) *(1(x), y) -> +(0(*(x, y)), y) *(*(x, y), z) -> *(x, *(y, z)) *(x, +(y, z)) -> +(*(x, y), *(x, z)) app(nil, l) -> l app(cons(x, l1), l2) -> cons(x, app(l1, l2)) sum(nil) -> 0(#) sum(cons(x, l)) -> +(x, sum(l)) sum(app(l1, l2)) -> +(sum(l1), sum(l2)) prod(nil) -> 1(#) prod(cons(x, l)) -> *(x, prod(l)) prod(app(l1, l2)) -> *(prod(l1), prod(l2)) mem(x, nil) -> false mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l)) inter(x, nil) -> nil inter(nil, x) -> nil inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3)) inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3)) inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2) inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1) ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2)) ifinter(false, x, l1, l2) -> inter(l1, l2) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(#) -> # encArg(1(x_1)) -> 1(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_0(x_1)) -> 0(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_ge(x_1, x_2)) -> ge(encArg(x_1), encArg(x_2)) encArg(cons_log(x_1)) -> log(encArg(x_1)) encArg(cons_log'(x_1)) -> log'(encArg(x_1)) encArg(cons_*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_prod(x_1)) -> prod(encArg(x_1)) encArg(cons_mem(x_1, x_2)) -> mem(encArg(x_1), encArg(x_2)) encArg(cons_inter(x_1, x_2)) -> inter(encArg(x_1), encArg(x_2)) encArg(cons_ifinter(x_1, x_2, x_3, x_4)) -> ifinter(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_0(x_1) -> 0(encArg(x_1)) encode_# -> # encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_1(x_1) -> 1(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_not(x_1) -> not(encArg(x_1)) encode_true -> true encode_false -> false encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_ge(x_1, x_2) -> ge(encArg(x_1), encArg(x_2)) encode_log(x_1) -> log(encArg(x_1)) encode_log'(x_1) -> log'(encArg(x_1)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_sum(x_1) -> sum(encArg(x_1)) encode_prod(x_1) -> prod(encArg(x_1)) encode_mem(x_1, x_2) -> mem(encArg(x_1), encArg(x_2)) encode_inter(x_1, x_2) -> inter(encArg(x_1), encArg(x_2)) encode_ifinter(x_1, x_2, x_3, x_4) -> ifinter(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(+(x, y), z) -> +(x, +(y, z)) -(#, x) -> # -(x, #) -> x -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(true) -> false not(false) -> true if(true, x, y) -> x if(false, x, y) -> y eq(#, #) -> true eq(#, 1(y)) -> false eq(1(x), #) -> false eq(#, 0(y)) -> eq(#, y) eq(0(x), #) -> eq(x, #) eq(1(x), 1(y)) -> eq(x, y) eq(0(x), 1(y)) -> false eq(1(x), 0(y)) -> false eq(0(x), 0(y)) -> eq(x, y) ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 0(x)) -> ge(#, x) ge(#, 1(x)) -> false log(x) -> -(log'(x), 1(#)) log'(#) -> # log'(1(x)) -> +(log'(x), 1(#)) log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #) *(#, x) -> # *(0(x), y) -> 0(*(x, y)) *(1(x), y) -> +(0(*(x, y)), y) *(*(x, y), z) -> *(x, *(y, z)) *(x, +(y, z)) -> +(*(x, y), *(x, z)) app(nil, l) -> l app(cons(x, l1), l2) -> cons(x, app(l1, l2)) sum(nil) -> 0(#) sum(cons(x, l)) -> +(x, sum(l)) sum(app(l1, l2)) -> +(sum(l1), sum(l2)) prod(nil) -> 1(#) prod(cons(x, l)) -> *(x, prod(l)) prod(app(l1, l2)) -> *(prod(l1), prod(l2)) mem(x, nil) -> false mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l)) inter(x, nil) -> nil inter(nil, x) -> nil inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3)) inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3)) inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2) inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1) ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2)) ifinter(false, x, l1, l2) -> inter(l1, l2) The (relative) TRS S consists of the following rules: encArg(#) -> # encArg(1(x_1)) -> 1(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_0(x_1)) -> 0(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_ge(x_1, x_2)) -> ge(encArg(x_1), encArg(x_2)) encArg(cons_log(x_1)) -> log(encArg(x_1)) encArg(cons_log'(x_1)) -> log'(encArg(x_1)) encArg(cons_*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_prod(x_1)) -> prod(encArg(x_1)) encArg(cons_mem(x_1, x_2)) -> mem(encArg(x_1), encArg(x_2)) encArg(cons_inter(x_1, x_2)) -> inter(encArg(x_1), encArg(x_2)) encArg(cons_ifinter(x_1, x_2, x_3, x_4)) -> ifinter(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_0(x_1) -> 0(encArg(x_1)) encode_# -> # encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_1(x_1) -> 1(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_not(x_1) -> not(encArg(x_1)) encode_true -> true encode_false -> false encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_ge(x_1, x_2) -> ge(encArg(x_1), encArg(x_2)) encode_log(x_1) -> log(encArg(x_1)) encode_log'(x_1) -> log'(encArg(x_1)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_sum(x_1) -> sum(encArg(x_1)) encode_prod(x_1) -> prod(encArg(x_1)) encode_mem(x_1, x_2) -> mem(encArg(x_1), encArg(x_2)) encode_inter(x_1, x_2) -> inter(encArg(x_1), encArg(x_2)) encode_ifinter(x_1, x_2, x_3, x_4) -> ifinter(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(+(x, y), z) -> +(x, +(y, z)) -(#, x) -> # -(x, #) -> x -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(true) -> false not(false) -> true if(true, x, y) -> x if(false, x, y) -> y eq(#, #) -> true eq(#, 1(y)) -> false eq(1(x), #) -> false eq(#, 0(y)) -> eq(#, y) eq(0(x), #) -> eq(x, #) eq(1(x), 1(y)) -> eq(x, y) eq(0(x), 1(y)) -> false eq(1(x), 0(y)) -> false eq(0(x), 0(y)) -> eq(x, y) ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 0(x)) -> ge(#, x) ge(#, 1(x)) -> false log(x) -> -(log'(x), 1(#)) log'(#) -> # log'(1(x)) -> +(log'(x), 1(#)) log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #) *(#, x) -> # *(0(x), y) -> 0(*(x, y)) *(1(x), y) -> +(0(*(x, y)), y) *(*(x, y), z) -> *(x, *(y, z)) *(x, +(y, z)) -> +(*(x, y), *(x, z)) app(nil, l) -> l app(cons(x, l1), l2) -> cons(x, app(l1, l2)) sum(nil) -> 0(#) sum(cons(x, l)) -> +(x, sum(l)) sum(app(l1, l2)) -> +(sum(l1), sum(l2)) prod(nil) -> 1(#) prod(cons(x, l)) -> *(x, prod(l)) prod(app(l1, l2)) -> *(prod(l1), prod(l2)) mem(x, nil) -> false mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l)) inter(x, nil) -> nil inter(nil, x) -> nil inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3)) inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3)) inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2) inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1) ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2)) ifinter(false, x, l1, l2) -> inter(l1, l2) The (relative) TRS S consists of the following rules: encArg(#) -> # encArg(1(x_1)) -> 1(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_0(x_1)) -> 0(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_ge(x_1, x_2)) -> ge(encArg(x_1), encArg(x_2)) encArg(cons_log(x_1)) -> log(encArg(x_1)) encArg(cons_log'(x_1)) -> log'(encArg(x_1)) encArg(cons_*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_prod(x_1)) -> prod(encArg(x_1)) encArg(cons_mem(x_1, x_2)) -> mem(encArg(x_1), encArg(x_2)) encArg(cons_inter(x_1, x_2)) -> inter(encArg(x_1), encArg(x_2)) encArg(cons_ifinter(x_1, x_2, x_3, x_4)) -> ifinter(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_0(x_1) -> 0(encArg(x_1)) encode_# -> # encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_1(x_1) -> 1(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_not(x_1) -> not(encArg(x_1)) encode_true -> true encode_false -> false encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_ge(x_1, x_2) -> ge(encArg(x_1), encArg(x_2)) encode_log(x_1) -> log(encArg(x_1)) encode_log'(x_1) -> log'(encArg(x_1)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_sum(x_1) -> sum(encArg(x_1)) encode_prod(x_1) -> prod(encArg(x_1)) encode_mem(x_1, x_2) -> mem(encArg(x_1), encArg(x_2)) encode_inter(x_1, x_2) -> inter(encArg(x_1), encArg(x_2)) encode_ifinter(x_1, x_2, x_3, x_4) -> ifinter(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(+(x, y), z) -> +(x, +(y, z)) -(#, x) -> # -(x, #) -> x -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(true) -> false not(false) -> true if(true, x, y) -> x if(false, x, y) -> y eq(#, #) -> true eq(#, 1(y)) -> false eq(1(x), #) -> false eq(#, 0(y)) -> eq(#, y) eq(0(x), #) -> eq(x, #) eq(1(x), 1(y)) -> eq(x, y) eq(0(x), 1(y)) -> false eq(1(x), 0(y)) -> false eq(0(x), 0(y)) -> eq(x, y) ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 0(x)) -> ge(#, x) ge(#, 1(x)) -> false log(x) -> -(log'(x), 1(#)) log'(#) -> # log'(1(x)) -> +(log'(x), 1(#)) log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #) *(#, x) -> # *(0(x), y) -> 0(*(x, y)) *(1(x), y) -> +(0(*(x, y)), y) *(*(x, y), z) -> *(x, *(y, z)) *(x, +(y, z)) -> +(*(x, y), *(x, z)) app(nil, l) -> l app(cons(x, l1), l2) -> cons(x, app(l1, l2)) sum(nil) -> 0(#) sum(cons(x, l)) -> +(x, sum(l)) sum(app(l1, l2)) -> +(sum(l1), sum(l2)) prod(nil) -> 1(#) prod(cons(x, l)) -> *(x, prod(l)) prod(app(l1, l2)) -> *(prod(l1), prod(l2)) mem(x, nil) -> false mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l)) inter(x, nil) -> nil inter(nil, x) -> nil inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3)) inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3)) inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2) inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1) ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2)) ifinter(false, x, l1, l2) -> inter(l1, l2) The (relative) TRS S consists of the following rules: encArg(#) -> # encArg(1(x_1)) -> 1(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_0(x_1)) -> 0(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_ge(x_1, x_2)) -> ge(encArg(x_1), encArg(x_2)) encArg(cons_log(x_1)) -> log(encArg(x_1)) encArg(cons_log'(x_1)) -> log'(encArg(x_1)) encArg(cons_*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_prod(x_1)) -> prod(encArg(x_1)) encArg(cons_mem(x_1, x_2)) -> mem(encArg(x_1), encArg(x_2)) encArg(cons_inter(x_1, x_2)) -> inter(encArg(x_1), encArg(x_2)) encArg(cons_ifinter(x_1, x_2, x_3, x_4)) -> ifinter(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_0(x_1) -> 0(encArg(x_1)) encode_# -> # encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_1(x_1) -> 1(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_not(x_1) -> not(encArg(x_1)) encode_true -> true encode_false -> false encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_ge(x_1, x_2) -> ge(encArg(x_1), encArg(x_2)) encode_log(x_1) -> log(encArg(x_1)) encode_log'(x_1) -> log'(encArg(x_1)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_sum(x_1) -> sum(encArg(x_1)) encode_prod(x_1) -> prod(encArg(x_1)) encode_mem(x_1, x_2) -> mem(encArg(x_1), encArg(x_2)) encode_inter(x_1, x_2) -> inter(encArg(x_1), encArg(x_2)) encode_ifinter(x_1, x_2, x_3, x_4) -> ifinter(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence +(1(x), 1(y)) ->^+ 0(+(+(x, y), 1(#))) gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0]. The pumping substitution is [x / 1(x), y / 1(y)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(+(x, y), z) -> +(x, +(y, z)) -(#, x) -> # -(x, #) -> x -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(true) -> false not(false) -> true if(true, x, y) -> x if(false, x, y) -> y eq(#, #) -> true eq(#, 1(y)) -> false eq(1(x), #) -> false eq(#, 0(y)) -> eq(#, y) eq(0(x), #) -> eq(x, #) eq(1(x), 1(y)) -> eq(x, y) eq(0(x), 1(y)) -> false eq(1(x), 0(y)) -> false eq(0(x), 0(y)) -> eq(x, y) ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 0(x)) -> ge(#, x) ge(#, 1(x)) -> false log(x) -> -(log'(x), 1(#)) log'(#) -> # log'(1(x)) -> +(log'(x), 1(#)) log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #) *(#, x) -> # *(0(x), y) -> 0(*(x, y)) *(1(x), y) -> +(0(*(x, y)), y) *(*(x, y), z) -> *(x, *(y, z)) *(x, +(y, z)) -> +(*(x, y), *(x, z)) app(nil, l) -> l app(cons(x, l1), l2) -> cons(x, app(l1, l2)) sum(nil) -> 0(#) sum(cons(x, l)) -> +(x, sum(l)) sum(app(l1, l2)) -> +(sum(l1), sum(l2)) prod(nil) -> 1(#) prod(cons(x, l)) -> *(x, prod(l)) prod(app(l1, l2)) -> *(prod(l1), prod(l2)) mem(x, nil) -> false mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l)) inter(x, nil) -> nil inter(nil, x) -> nil inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3)) inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3)) inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2) inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1) ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2)) ifinter(false, x, l1, l2) -> inter(l1, l2) The (relative) TRS S consists of the following rules: encArg(#) -> # encArg(1(x_1)) -> 1(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_0(x_1)) -> 0(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_ge(x_1, x_2)) -> ge(encArg(x_1), encArg(x_2)) encArg(cons_log(x_1)) -> log(encArg(x_1)) encArg(cons_log'(x_1)) -> log'(encArg(x_1)) encArg(cons_*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_prod(x_1)) -> prod(encArg(x_1)) encArg(cons_mem(x_1, x_2)) -> mem(encArg(x_1), encArg(x_2)) encArg(cons_inter(x_1, x_2)) -> inter(encArg(x_1), encArg(x_2)) encArg(cons_ifinter(x_1, x_2, x_3, x_4)) -> ifinter(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_0(x_1) -> 0(encArg(x_1)) encode_# -> # encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_1(x_1) -> 1(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_not(x_1) -> not(encArg(x_1)) encode_true -> true encode_false -> false encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_ge(x_1, x_2) -> ge(encArg(x_1), encArg(x_2)) encode_log(x_1) -> log(encArg(x_1)) encode_log'(x_1) -> log'(encArg(x_1)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_sum(x_1) -> sum(encArg(x_1)) encode_prod(x_1) -> prod(encArg(x_1)) encode_mem(x_1, x_2) -> mem(encArg(x_1), encArg(x_2)) encode_inter(x_1, x_2) -> inter(encArg(x_1), encArg(x_2)) encode_ifinter(x_1, x_2, x_3, x_4) -> ifinter(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(+(x, y), z) -> +(x, +(y, z)) -(#, x) -> # -(x, #) -> x -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(true) -> false not(false) -> true if(true, x, y) -> x if(false, x, y) -> y eq(#, #) -> true eq(#, 1(y)) -> false eq(1(x), #) -> false eq(#, 0(y)) -> eq(#, y) eq(0(x), #) -> eq(x, #) eq(1(x), 1(y)) -> eq(x, y) eq(0(x), 1(y)) -> false eq(1(x), 0(y)) -> false eq(0(x), 0(y)) -> eq(x, y) ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 0(x)) -> ge(#, x) ge(#, 1(x)) -> false log(x) -> -(log'(x), 1(#)) log'(#) -> # log'(1(x)) -> +(log'(x), 1(#)) log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #) *(#, x) -> # *(0(x), y) -> 0(*(x, y)) *(1(x), y) -> +(0(*(x, y)), y) *(*(x, y), z) -> *(x, *(y, z)) *(x, +(y, z)) -> +(*(x, y), *(x, z)) app(nil, l) -> l app(cons(x, l1), l2) -> cons(x, app(l1, l2)) sum(nil) -> 0(#) sum(cons(x, l)) -> +(x, sum(l)) sum(app(l1, l2)) -> +(sum(l1), sum(l2)) prod(nil) -> 1(#) prod(cons(x, l)) -> *(x, prod(l)) prod(app(l1, l2)) -> *(prod(l1), prod(l2)) mem(x, nil) -> false mem(x, cons(y, l)) -> if(eq(x, y), true, mem(x, l)) inter(x, nil) -> nil inter(nil, x) -> nil inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3)) inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3)) inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2) inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1) ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2)) ifinter(false, x, l1, l2) -> inter(l1, l2) The (relative) TRS S consists of the following rules: encArg(#) -> # encArg(1(x_1)) -> 1(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_0(x_1)) -> 0(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_ge(x_1, x_2)) -> ge(encArg(x_1), encArg(x_2)) encArg(cons_log(x_1)) -> log(encArg(x_1)) encArg(cons_log'(x_1)) -> log'(encArg(x_1)) encArg(cons_*(x_1, x_2)) -> *(encArg(x_1), encArg(x_2)) encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_sum(x_1)) -> sum(encArg(x_1)) encArg(cons_prod(x_1)) -> prod(encArg(x_1)) encArg(cons_mem(x_1, x_2)) -> mem(encArg(x_1), encArg(x_2)) encArg(cons_inter(x_1, x_2)) -> inter(encArg(x_1), encArg(x_2)) encArg(cons_ifinter(x_1, x_2, x_3, x_4)) -> ifinter(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_0(x_1) -> 0(encArg(x_1)) encode_# -> # encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_1(x_1) -> 1(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_not(x_1) -> not(encArg(x_1)) encode_true -> true encode_false -> false encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_ge(x_1, x_2) -> ge(encArg(x_1), encArg(x_2)) encode_log(x_1) -> log(encArg(x_1)) encode_log'(x_1) -> log'(encArg(x_1)) encode_*(x_1, x_2) -> *(encArg(x_1), encArg(x_2)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_sum(x_1) -> sum(encArg(x_1)) encode_prod(x_1) -> prod(encArg(x_1)) encode_mem(x_1, x_2) -> mem(encArg(x_1), encArg(x_2)) encode_inter(x_1, x_2) -> inter(encArg(x_1), encArg(x_2)) encode_ifinter(x_1, x_2, x_3, x_4) -> ifinter(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) Rewrite Strategy: INNERMOST