/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 270 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: min(0, y) -> 0 min(s(x), 0) -> 0 min(s(x), s(y)) -> min(x, y) len(nil) -> 0 len(cons(x, xs)) -> s(len(xs)) sum(x, 0) -> x sum(x, s(y)) -> s(sum(x, y)) le(0, x) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) take(0, cons(y, ys)) -> y take(s(x), cons(y, ys)) -> take(x, ys) addList(x, y) -> if(le(0, min(len(x), len(y))), 0, x, y, nil) if(false, c, x, y, z) -> z if(true, c, xs, ys, z) -> if(le(s(c), min(len(xs), len(ys))), s(c), xs, ys, cons(sum(take(c, xs), take(c, ys)), z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(cons_min(x_1, x_2)) -> min(encArg(x_1), encArg(x_2)) encArg(cons_len(x_1)) -> len(encArg(x_1)) encArg(cons_sum(x_1, x_2)) -> sum(encArg(x_1), encArg(x_2)) encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_take(x_1, x_2)) -> take(encArg(x_1), encArg(x_2)) encArg(cons_addList(x_1, x_2)) -> addList(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_min(x_1, x_2) -> min(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_len(x_1) -> len(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_sum(x_1, x_2) -> sum(encArg(x_1), encArg(x_2)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_take(x_1, x_2) -> take(encArg(x_1), encArg(x_2)) encode_addList(x_1, x_2) -> addList(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: min(0, y) -> 0 min(s(x), 0) -> 0 min(s(x), s(y)) -> min(x, y) len(nil) -> 0 len(cons(x, xs)) -> s(len(xs)) sum(x, 0) -> x sum(x, s(y)) -> s(sum(x, y)) le(0, x) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) take(0, cons(y, ys)) -> y take(s(x), cons(y, ys)) -> take(x, ys) addList(x, y) -> if(le(0, min(len(x), len(y))), 0, x, y, nil) if(false, c, x, y, z) -> z if(true, c, xs, ys, z) -> if(le(s(c), min(len(xs), len(ys))), s(c), xs, ys, cons(sum(take(c, xs), take(c, ys)), z)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(cons_min(x_1, x_2)) -> min(encArg(x_1), encArg(x_2)) encArg(cons_len(x_1)) -> len(encArg(x_1)) encArg(cons_sum(x_1, x_2)) -> sum(encArg(x_1), encArg(x_2)) encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_take(x_1, x_2)) -> take(encArg(x_1), encArg(x_2)) encArg(cons_addList(x_1, x_2)) -> addList(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_min(x_1, x_2) -> min(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_len(x_1) -> len(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_sum(x_1, x_2) -> sum(encArg(x_1), encArg(x_2)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_take(x_1, x_2) -> take(encArg(x_1), encArg(x_2)) encode_addList(x_1, x_2) -> addList(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: min(0, y) -> 0 min(s(x), 0) -> 0 min(s(x), s(y)) -> min(x, y) len(nil) -> 0 len(cons(x, xs)) -> s(len(xs)) sum(x, 0) -> x sum(x, s(y)) -> s(sum(x, y)) le(0, x) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) take(0, cons(y, ys)) -> y take(s(x), cons(y, ys)) -> take(x, ys) addList(x, y) -> if(le(0, min(len(x), len(y))), 0, x, y, nil) if(false, c, x, y, z) -> z if(true, c, xs, ys, z) -> if(le(s(c), min(len(xs), len(ys))), s(c), xs, ys, cons(sum(take(c, xs), take(c, ys)), z)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(cons_min(x_1, x_2)) -> min(encArg(x_1), encArg(x_2)) encArg(cons_len(x_1)) -> len(encArg(x_1)) encArg(cons_sum(x_1, x_2)) -> sum(encArg(x_1), encArg(x_2)) encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_take(x_1, x_2)) -> take(encArg(x_1), encArg(x_2)) encArg(cons_addList(x_1, x_2)) -> addList(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_min(x_1, x_2) -> min(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_len(x_1) -> len(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_sum(x_1, x_2) -> sum(encArg(x_1), encArg(x_2)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_take(x_1, x_2) -> take(encArg(x_1), encArg(x_2)) encode_addList(x_1, x_2) -> addList(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: min(0, y) -> 0 min(s(x), 0) -> 0 min(s(x), s(y)) -> min(x, y) len(nil) -> 0 len(cons(x, xs)) -> s(len(xs)) sum(x, 0) -> x sum(x, s(y)) -> s(sum(x, y)) le(0, x) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) take(0, cons(y, ys)) -> y take(s(x), cons(y, ys)) -> take(x, ys) addList(x, y) -> if(le(0, min(len(x), len(y))), 0, x, y, nil) if(false, c, x, y, z) -> z if(true, c, xs, ys, z) -> if(le(s(c), min(len(xs), len(ys))), s(c), xs, ys, cons(sum(take(c, xs), take(c, ys)), z)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(cons_min(x_1, x_2)) -> min(encArg(x_1), encArg(x_2)) encArg(cons_len(x_1)) -> len(encArg(x_1)) encArg(cons_sum(x_1, x_2)) -> sum(encArg(x_1), encArg(x_2)) encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_take(x_1, x_2)) -> take(encArg(x_1), encArg(x_2)) encArg(cons_addList(x_1, x_2)) -> addList(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_min(x_1, x_2) -> min(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_len(x_1) -> len(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_sum(x_1, x_2) -> sum(encArg(x_1), encArg(x_2)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_take(x_1, x_2) -> take(encArg(x_1), encArg(x_2)) encode_addList(x_1, x_2) -> addList(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence min(s(x), s(y)) ->^+ min(x, y) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(x), y / s(y)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: min(0, y) -> 0 min(s(x), 0) -> 0 min(s(x), s(y)) -> min(x, y) len(nil) -> 0 len(cons(x, xs)) -> s(len(xs)) sum(x, 0) -> x sum(x, s(y)) -> s(sum(x, y)) le(0, x) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) take(0, cons(y, ys)) -> y take(s(x), cons(y, ys)) -> take(x, ys) addList(x, y) -> if(le(0, min(len(x), len(y))), 0, x, y, nil) if(false, c, x, y, z) -> z if(true, c, xs, ys, z) -> if(le(s(c), min(len(xs), len(ys))), s(c), xs, ys, cons(sum(take(c, xs), take(c, ys)), z)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(cons_min(x_1, x_2)) -> min(encArg(x_1), encArg(x_2)) encArg(cons_len(x_1)) -> len(encArg(x_1)) encArg(cons_sum(x_1, x_2)) -> sum(encArg(x_1), encArg(x_2)) encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_take(x_1, x_2)) -> take(encArg(x_1), encArg(x_2)) encArg(cons_addList(x_1, x_2)) -> addList(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_min(x_1, x_2) -> min(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_len(x_1) -> len(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_sum(x_1, x_2) -> sum(encArg(x_1), encArg(x_2)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_take(x_1, x_2) -> take(encArg(x_1), encArg(x_2)) encode_addList(x_1, x_2) -> addList(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: min(0, y) -> 0 min(s(x), 0) -> 0 min(s(x), s(y)) -> min(x, y) len(nil) -> 0 len(cons(x, xs)) -> s(len(xs)) sum(x, 0) -> x sum(x, s(y)) -> s(sum(x, y)) le(0, x) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) take(0, cons(y, ys)) -> y take(s(x), cons(y, ys)) -> take(x, ys) addList(x, y) -> if(le(0, min(len(x), len(y))), 0, x, y, nil) if(false, c, x, y, z) -> z if(true, c, xs, ys, z) -> if(le(s(c), min(len(xs), len(ys))), s(c), xs, ys, cons(sum(take(c, xs), take(c, ys)), z)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(cons_min(x_1, x_2)) -> min(encArg(x_1), encArg(x_2)) encArg(cons_len(x_1)) -> len(encArg(x_1)) encArg(cons_sum(x_1, x_2)) -> sum(encArg(x_1), encArg(x_2)) encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_take(x_1, x_2)) -> take(encArg(x_1), encArg(x_2)) encArg(cons_addList(x_1, x_2)) -> addList(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_min(x_1, x_2) -> min(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_len(x_1) -> len(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_sum(x_1, x_2) -> sum(encArg(x_1), encArg(x_2)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_take(x_1, x_2) -> take(encArg(x_1), encArg(x_2)) encode_addList(x_1, x_2) -> addList(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) Rewrite Strategy: INNERMOST