/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 309 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 3 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) lastbit(0) -> 0 lastbit(s(0)) -> s(0) lastbit(s(s(x))) -> lastbit(x) zero(0) -> true zero(s(x)) -> false conv(x) -> conviter(x, cons(0, nil)) conviter(x, l) -> if(zero(x), x, l) if(true, x, l) -> l if(false, x, l) -> conviter(half(x), cons(lastbit(x), l)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(nil) -> nil encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_lastbit(x_1)) -> lastbit(encArg(x_1)) encArg(cons_zero(x_1)) -> zero(encArg(x_1)) encArg(cons_conv(x_1)) -> conv(encArg(x_1)) encArg(cons_conviter(x_1, x_2)) -> conviter(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_half(x_1) -> half(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_lastbit(x_1) -> lastbit(encArg(x_1)) encode_zero(x_1) -> zero(encArg(x_1)) encode_true -> true encode_false -> false encode_conv(x_1) -> conv(encArg(x_1)) encode_conviter(x_1, x_2) -> conviter(encArg(x_1), encArg(x_2)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) lastbit(0) -> 0 lastbit(s(0)) -> s(0) lastbit(s(s(x))) -> lastbit(x) zero(0) -> true zero(s(x)) -> false conv(x) -> conviter(x, cons(0, nil)) conviter(x, l) -> if(zero(x), x, l) if(true, x, l) -> l if(false, x, l) -> conviter(half(x), cons(lastbit(x), l)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(nil) -> nil encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_lastbit(x_1)) -> lastbit(encArg(x_1)) encArg(cons_zero(x_1)) -> zero(encArg(x_1)) encArg(cons_conv(x_1)) -> conv(encArg(x_1)) encArg(cons_conviter(x_1, x_2)) -> conviter(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_half(x_1) -> half(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_lastbit(x_1) -> lastbit(encArg(x_1)) encode_zero(x_1) -> zero(encArg(x_1)) encode_true -> true encode_false -> false encode_conv(x_1) -> conv(encArg(x_1)) encode_conviter(x_1, x_2) -> conviter(encArg(x_1), encArg(x_2)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) lastbit(0) -> 0 lastbit(s(0)) -> s(0) lastbit(s(s(x))) -> lastbit(x) zero(0) -> true zero(s(x)) -> false conv(x) -> conviter(x, cons(0, nil)) conviter(x, l) -> if(zero(x), x, l) if(true, x, l) -> l if(false, x, l) -> conviter(half(x), cons(lastbit(x), l)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(nil) -> nil encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_lastbit(x_1)) -> lastbit(encArg(x_1)) encArg(cons_zero(x_1)) -> zero(encArg(x_1)) encArg(cons_conv(x_1)) -> conv(encArg(x_1)) encArg(cons_conviter(x_1, x_2)) -> conviter(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_half(x_1) -> half(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_lastbit(x_1) -> lastbit(encArg(x_1)) encode_zero(x_1) -> zero(encArg(x_1)) encode_true -> true encode_false -> false encode_conv(x_1) -> conv(encArg(x_1)) encode_conviter(x_1, x_2) -> conviter(encArg(x_1), encArg(x_2)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) lastbit(0) -> 0 lastbit(s(0)) -> s(0) lastbit(s(s(x))) -> lastbit(x) zero(0) -> true zero(s(x)) -> false conv(x) -> conviter(x, cons(0, nil)) conviter(x, l) -> if(zero(x), x, l) if(true, x, l) -> l if(false, x, l) -> conviter(half(x), cons(lastbit(x), l)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(nil) -> nil encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_lastbit(x_1)) -> lastbit(encArg(x_1)) encArg(cons_zero(x_1)) -> zero(encArg(x_1)) encArg(cons_conv(x_1)) -> conv(encArg(x_1)) encArg(cons_conviter(x_1, x_2)) -> conviter(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_half(x_1) -> half(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_lastbit(x_1) -> lastbit(encArg(x_1)) encode_zero(x_1) -> zero(encArg(x_1)) encode_true -> true encode_false -> false encode_conv(x_1) -> conv(encArg(x_1)) encode_conviter(x_1, x_2) -> conviter(encArg(x_1), encArg(x_2)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence lastbit(s(s(x))) ->^+ lastbit(x) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(s(x))]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) lastbit(0) -> 0 lastbit(s(0)) -> s(0) lastbit(s(s(x))) -> lastbit(x) zero(0) -> true zero(s(x)) -> false conv(x) -> conviter(x, cons(0, nil)) conviter(x, l) -> if(zero(x), x, l) if(true, x, l) -> l if(false, x, l) -> conviter(half(x), cons(lastbit(x), l)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(nil) -> nil encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_lastbit(x_1)) -> lastbit(encArg(x_1)) encArg(cons_zero(x_1)) -> zero(encArg(x_1)) encArg(cons_conv(x_1)) -> conv(encArg(x_1)) encArg(cons_conviter(x_1, x_2)) -> conviter(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_half(x_1) -> half(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_lastbit(x_1) -> lastbit(encArg(x_1)) encode_zero(x_1) -> zero(encArg(x_1)) encode_true -> true encode_false -> false encode_conv(x_1) -> conv(encArg(x_1)) encode_conviter(x_1, x_2) -> conviter(encArg(x_1), encArg(x_2)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) lastbit(0) -> 0 lastbit(s(0)) -> s(0) lastbit(s(s(x))) -> lastbit(x) zero(0) -> true zero(s(x)) -> false conv(x) -> conviter(x, cons(0, nil)) conviter(x, l) -> if(zero(x), x, l) if(true, x, l) -> l if(false, x, l) -> conviter(half(x), cons(lastbit(x), l)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(nil) -> nil encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_lastbit(x_1)) -> lastbit(encArg(x_1)) encArg(cons_zero(x_1)) -> zero(encArg(x_1)) encArg(cons_conv(x_1)) -> conv(encArg(x_1)) encArg(cons_conviter(x_1, x_2)) -> conviter(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_half(x_1) -> half(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_lastbit(x_1) -> lastbit(encArg(x_1)) encode_zero(x_1) -> zero(encArg(x_1)) encode_true -> true encode_false -> false encode_conv(x_1) -> conv(encArg(x_1)) encode_conviter(x_1, x_2) -> conviter(encArg(x_1), encArg(x_2)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST