/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 722 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: app(x, y) -> helpa(0, plus(length(x), length(y)), x, y) plus(x, 0) -> x plus(x, s(y)) -> s(plus(x, y)) length(nil) -> 0 length(cons(x, y)) -> s(length(y)) helpa(c, l, ys, zs) -> if(ge(c, l), c, l, ys, zs) ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) if(true, c, l, ys, zs) -> nil if(false, c, l, ys, zs) -> helpb(c, l, greater(ys, zs), smaller(ys, zs)) greater(ys, zs) -> helpc(ge(length(ys), length(zs)), ys, zs) smaller(ys, zs) -> helpc(ge(length(ys), length(zs)), zs, ys) helpc(true, ys, zs) -> ys helpc(false, ys, zs) -> zs helpb(c, l, cons(y, ys), zs) -> cons(y, helpa(s(c), l, ys, zs)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_length(x_1)) -> length(encArg(x_1)) encArg(cons_helpa(x_1, x_2, x_3, x_4)) -> helpa(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_ge(x_1, x_2)) -> ge(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encArg(cons_greater(x_1, x_2)) -> greater(encArg(x_1), encArg(x_2)) encArg(cons_smaller(x_1, x_2)) -> smaller(encArg(x_1), encArg(x_2)) encArg(cons_helpc(x_1, x_2, x_3)) -> helpc(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_helpb(x_1, x_2, x_3, x_4)) -> helpb(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_helpa(x_1, x_2, x_3, x_4) -> helpa(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_0 -> 0 encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_length(x_1) -> length(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_ge(x_1, x_2) -> ge(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_helpb(x_1, x_2, x_3, x_4) -> helpb(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_greater(x_1, x_2) -> greater(encArg(x_1), encArg(x_2)) encode_smaller(x_1, x_2) -> smaller(encArg(x_1), encArg(x_2)) encode_helpc(x_1, x_2, x_3) -> helpc(encArg(x_1), encArg(x_2), encArg(x_3)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: app(x, y) -> helpa(0, plus(length(x), length(y)), x, y) plus(x, 0) -> x plus(x, s(y)) -> s(plus(x, y)) length(nil) -> 0 length(cons(x, y)) -> s(length(y)) helpa(c, l, ys, zs) -> if(ge(c, l), c, l, ys, zs) ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) if(true, c, l, ys, zs) -> nil if(false, c, l, ys, zs) -> helpb(c, l, greater(ys, zs), smaller(ys, zs)) greater(ys, zs) -> helpc(ge(length(ys), length(zs)), ys, zs) smaller(ys, zs) -> helpc(ge(length(ys), length(zs)), zs, ys) helpc(true, ys, zs) -> ys helpc(false, ys, zs) -> zs helpb(c, l, cons(y, ys), zs) -> cons(y, helpa(s(c), l, ys, zs)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_length(x_1)) -> length(encArg(x_1)) encArg(cons_helpa(x_1, x_2, x_3, x_4)) -> helpa(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_ge(x_1, x_2)) -> ge(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encArg(cons_greater(x_1, x_2)) -> greater(encArg(x_1), encArg(x_2)) encArg(cons_smaller(x_1, x_2)) -> smaller(encArg(x_1), encArg(x_2)) encArg(cons_helpc(x_1, x_2, x_3)) -> helpc(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_helpb(x_1, x_2, x_3, x_4)) -> helpb(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_helpa(x_1, x_2, x_3, x_4) -> helpa(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_0 -> 0 encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_length(x_1) -> length(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_ge(x_1, x_2) -> ge(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_helpb(x_1, x_2, x_3, x_4) -> helpb(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_greater(x_1, x_2) -> greater(encArg(x_1), encArg(x_2)) encode_smaller(x_1, x_2) -> smaller(encArg(x_1), encArg(x_2)) encode_helpc(x_1, x_2, x_3) -> helpc(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: app(x, y) -> helpa(0, plus(length(x), length(y)), x, y) plus(x, 0) -> x plus(x, s(y)) -> s(plus(x, y)) length(nil) -> 0 length(cons(x, y)) -> s(length(y)) helpa(c, l, ys, zs) -> if(ge(c, l), c, l, ys, zs) ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) if(true, c, l, ys, zs) -> nil if(false, c, l, ys, zs) -> helpb(c, l, greater(ys, zs), smaller(ys, zs)) greater(ys, zs) -> helpc(ge(length(ys), length(zs)), ys, zs) smaller(ys, zs) -> helpc(ge(length(ys), length(zs)), zs, ys) helpc(true, ys, zs) -> ys helpc(false, ys, zs) -> zs helpb(c, l, cons(y, ys), zs) -> cons(y, helpa(s(c), l, ys, zs)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_length(x_1)) -> length(encArg(x_1)) encArg(cons_helpa(x_1, x_2, x_3, x_4)) -> helpa(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_ge(x_1, x_2)) -> ge(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encArg(cons_greater(x_1, x_2)) -> greater(encArg(x_1), encArg(x_2)) encArg(cons_smaller(x_1, x_2)) -> smaller(encArg(x_1), encArg(x_2)) encArg(cons_helpc(x_1, x_2, x_3)) -> helpc(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_helpb(x_1, x_2, x_3, x_4)) -> helpb(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_helpa(x_1, x_2, x_3, x_4) -> helpa(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_0 -> 0 encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_length(x_1) -> length(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_ge(x_1, x_2) -> ge(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_helpb(x_1, x_2, x_3, x_4) -> helpb(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_greater(x_1, x_2) -> greater(encArg(x_1), encArg(x_2)) encode_smaller(x_1, x_2) -> smaller(encArg(x_1), encArg(x_2)) encode_helpc(x_1, x_2, x_3) -> helpc(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: app(x, y) -> helpa(0, plus(length(x), length(y)), x, y) plus(x, 0) -> x plus(x, s(y)) -> s(plus(x, y)) length(nil) -> 0 length(cons(x, y)) -> s(length(y)) helpa(c, l, ys, zs) -> if(ge(c, l), c, l, ys, zs) ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) if(true, c, l, ys, zs) -> nil if(false, c, l, ys, zs) -> helpb(c, l, greater(ys, zs), smaller(ys, zs)) greater(ys, zs) -> helpc(ge(length(ys), length(zs)), ys, zs) smaller(ys, zs) -> helpc(ge(length(ys), length(zs)), zs, ys) helpc(true, ys, zs) -> ys helpc(false, ys, zs) -> zs helpb(c, l, cons(y, ys), zs) -> cons(y, helpa(s(c), l, ys, zs)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_length(x_1)) -> length(encArg(x_1)) encArg(cons_helpa(x_1, x_2, x_3, x_4)) -> helpa(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_ge(x_1, x_2)) -> ge(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encArg(cons_greater(x_1, x_2)) -> greater(encArg(x_1), encArg(x_2)) encArg(cons_smaller(x_1, x_2)) -> smaller(encArg(x_1), encArg(x_2)) encArg(cons_helpc(x_1, x_2, x_3)) -> helpc(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_helpb(x_1, x_2, x_3, x_4)) -> helpb(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_helpa(x_1, x_2, x_3, x_4) -> helpa(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_0 -> 0 encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_length(x_1) -> length(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_ge(x_1, x_2) -> ge(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_helpb(x_1, x_2, x_3, x_4) -> helpb(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_greater(x_1, x_2) -> greater(encArg(x_1), encArg(x_2)) encode_smaller(x_1, x_2) -> smaller(encArg(x_1), encArg(x_2)) encode_helpc(x_1, x_2, x_3) -> helpc(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence plus(x, s(y)) ->^+ s(plus(x, y)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [y / s(y)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: app(x, y) -> helpa(0, plus(length(x), length(y)), x, y) plus(x, 0) -> x plus(x, s(y)) -> s(plus(x, y)) length(nil) -> 0 length(cons(x, y)) -> s(length(y)) helpa(c, l, ys, zs) -> if(ge(c, l), c, l, ys, zs) ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) if(true, c, l, ys, zs) -> nil if(false, c, l, ys, zs) -> helpb(c, l, greater(ys, zs), smaller(ys, zs)) greater(ys, zs) -> helpc(ge(length(ys), length(zs)), ys, zs) smaller(ys, zs) -> helpc(ge(length(ys), length(zs)), zs, ys) helpc(true, ys, zs) -> ys helpc(false, ys, zs) -> zs helpb(c, l, cons(y, ys), zs) -> cons(y, helpa(s(c), l, ys, zs)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_length(x_1)) -> length(encArg(x_1)) encArg(cons_helpa(x_1, x_2, x_3, x_4)) -> helpa(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_ge(x_1, x_2)) -> ge(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encArg(cons_greater(x_1, x_2)) -> greater(encArg(x_1), encArg(x_2)) encArg(cons_smaller(x_1, x_2)) -> smaller(encArg(x_1), encArg(x_2)) encArg(cons_helpc(x_1, x_2, x_3)) -> helpc(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_helpb(x_1, x_2, x_3, x_4)) -> helpb(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_helpa(x_1, x_2, x_3, x_4) -> helpa(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_0 -> 0 encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_length(x_1) -> length(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_ge(x_1, x_2) -> ge(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_helpb(x_1, x_2, x_3, x_4) -> helpb(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_greater(x_1, x_2) -> greater(encArg(x_1), encArg(x_2)) encode_smaller(x_1, x_2) -> smaller(encArg(x_1), encArg(x_2)) encode_helpc(x_1, x_2, x_3) -> helpc(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: app(x, y) -> helpa(0, plus(length(x), length(y)), x, y) plus(x, 0) -> x plus(x, s(y)) -> s(plus(x, y)) length(nil) -> 0 length(cons(x, y)) -> s(length(y)) helpa(c, l, ys, zs) -> if(ge(c, l), c, l, ys, zs) ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) if(true, c, l, ys, zs) -> nil if(false, c, l, ys, zs) -> helpb(c, l, greater(ys, zs), smaller(ys, zs)) greater(ys, zs) -> helpc(ge(length(ys), length(zs)), ys, zs) smaller(ys, zs) -> helpc(ge(length(ys), length(zs)), zs, ys) helpc(true, ys, zs) -> ys helpc(false, ys, zs) -> zs helpb(c, l, cons(y, ys), zs) -> cons(y, helpa(s(c), l, ys, zs)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(cons_app(x_1, x_2)) -> app(encArg(x_1), encArg(x_2)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_length(x_1)) -> length(encArg(x_1)) encArg(cons_helpa(x_1, x_2, x_3, x_4)) -> helpa(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_ge(x_1, x_2)) -> ge(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3, x_4, x_5)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encArg(cons_greater(x_1, x_2)) -> greater(encArg(x_1), encArg(x_2)) encArg(cons_smaller(x_1, x_2)) -> smaller(encArg(x_1), encArg(x_2)) encArg(cons_helpc(x_1, x_2, x_3)) -> helpc(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_helpb(x_1, x_2, x_3, x_4)) -> helpb(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_app(x_1, x_2) -> app(encArg(x_1), encArg(x_2)) encode_helpa(x_1, x_2, x_3, x_4) -> helpa(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_0 -> 0 encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_length(x_1) -> length(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3, x_4, x_5) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4), encArg(x_5)) encode_ge(x_1, x_2) -> ge(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_helpb(x_1, x_2, x_3, x_4) -> helpb(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_greater(x_1, x_2) -> greater(encArg(x_1), encArg(x_2)) encode_smaller(x_1, x_2) -> smaller(encArg(x_1), encArg(x_2)) encode_helpc(x_1, x_2, x_3) -> helpc(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: INNERMOST