/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 510 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(eq(0, 0)) -> mark(true) active(eq(s(X), s(Y))) -> mark(eq(X, Y)) active(eq(X, Y)) -> mark(false) active(inf(X)) -> mark(cons(X, inf(s(X)))) active(take(0, X)) -> mark(nil) active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L))) active(length(nil)) -> mark(0) active(length(cons(X, L))) -> mark(s(length(L))) active(inf(X)) -> inf(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) active(length(X)) -> length(active(X)) inf(mark(X)) -> mark(inf(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) length(mark(X)) -> mark(length(X)) proper(eq(X1, X2)) -> eq(proper(X1), proper(X2)) proper(0) -> ok(0) proper(true) -> ok(true) proper(s(X)) -> s(proper(X)) proper(false) -> ok(false) proper(inf(X)) -> inf(proper(X)) proper(cons(any(X1), X2)) -> cons(any(any(proper(X1))), any(proper(X2))) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(length(X)) -> length(proper(X)) eq(ok(X1), ok(X2)) -> ok(eq(X1, X2)) s(ok(X)) -> ok(s(X)) inf(ok(X)) -> ok(inf(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) length(ok(X)) -> ok(length(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) any(X) -> s(X) any(proper(X)) -> any(any(any(X))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(nil) -> nil encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_inf(x_1)) -> inf(encArg(x_1)) encArg(cons_take(x_1, x_2)) -> take(encArg(x_1), encArg(x_2)) encArg(cons_length(x_1)) -> length(encArg(x_1)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encArg(cons_any(x_1)) -> any(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_mark(x_1) -> mark(encArg(x_1)) encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_inf(x_1) -> inf(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_take(x_1, x_2) -> take(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_length(x_1) -> length(encArg(x_1)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_any(x_1) -> any(encArg(x_1)) encode_top(x_1) -> top(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(eq(0, 0)) -> mark(true) active(eq(s(X), s(Y))) -> mark(eq(X, Y)) active(eq(X, Y)) -> mark(false) active(inf(X)) -> mark(cons(X, inf(s(X)))) active(take(0, X)) -> mark(nil) active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L))) active(length(nil)) -> mark(0) active(length(cons(X, L))) -> mark(s(length(L))) active(inf(X)) -> inf(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) active(length(X)) -> length(active(X)) inf(mark(X)) -> mark(inf(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) length(mark(X)) -> mark(length(X)) proper(eq(X1, X2)) -> eq(proper(X1), proper(X2)) proper(0) -> ok(0) proper(true) -> ok(true) proper(s(X)) -> s(proper(X)) proper(false) -> ok(false) proper(inf(X)) -> inf(proper(X)) proper(cons(any(X1), X2)) -> cons(any(any(proper(X1))), any(proper(X2))) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(length(X)) -> length(proper(X)) eq(ok(X1), ok(X2)) -> ok(eq(X1, X2)) s(ok(X)) -> ok(s(X)) inf(ok(X)) -> ok(inf(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) length(ok(X)) -> ok(length(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) any(X) -> s(X) any(proper(X)) -> any(any(any(X))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(nil) -> nil encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_inf(x_1)) -> inf(encArg(x_1)) encArg(cons_take(x_1, x_2)) -> take(encArg(x_1), encArg(x_2)) encArg(cons_length(x_1)) -> length(encArg(x_1)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encArg(cons_any(x_1)) -> any(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_mark(x_1) -> mark(encArg(x_1)) encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_inf(x_1) -> inf(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_take(x_1, x_2) -> take(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_length(x_1) -> length(encArg(x_1)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_any(x_1) -> any(encArg(x_1)) encode_top(x_1) -> top(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(eq(0, 0)) -> mark(true) active(eq(s(X), s(Y))) -> mark(eq(X, Y)) active(eq(X, Y)) -> mark(false) active(inf(X)) -> mark(cons(X, inf(s(X)))) active(take(0, X)) -> mark(nil) active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L))) active(length(nil)) -> mark(0) active(length(cons(X, L))) -> mark(s(length(L))) active(inf(X)) -> inf(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) active(length(X)) -> length(active(X)) inf(mark(X)) -> mark(inf(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) length(mark(X)) -> mark(length(X)) proper(eq(X1, X2)) -> eq(proper(X1), proper(X2)) proper(0) -> ok(0) proper(true) -> ok(true) proper(s(X)) -> s(proper(X)) proper(false) -> ok(false) proper(inf(X)) -> inf(proper(X)) proper(cons(any(X1), X2)) -> cons(any(any(proper(X1))), any(proper(X2))) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(length(X)) -> length(proper(X)) eq(ok(X1), ok(X2)) -> ok(eq(X1, X2)) s(ok(X)) -> ok(s(X)) inf(ok(X)) -> ok(inf(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) length(ok(X)) -> ok(length(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) any(X) -> s(X) any(proper(X)) -> any(any(any(X))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(nil) -> nil encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_inf(x_1)) -> inf(encArg(x_1)) encArg(cons_take(x_1, x_2)) -> take(encArg(x_1), encArg(x_2)) encArg(cons_length(x_1)) -> length(encArg(x_1)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encArg(cons_any(x_1)) -> any(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_mark(x_1) -> mark(encArg(x_1)) encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_inf(x_1) -> inf(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_take(x_1, x_2) -> take(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_length(x_1) -> length(encArg(x_1)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_any(x_1) -> any(encArg(x_1)) encode_top(x_1) -> top(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(eq(0, 0)) -> mark(true) active(eq(s(X), s(Y))) -> mark(eq(X, Y)) active(eq(X, Y)) -> mark(false) active(inf(X)) -> mark(cons(X, inf(s(X)))) active(take(0, X)) -> mark(nil) active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L))) active(length(nil)) -> mark(0) active(length(cons(X, L))) -> mark(s(length(L))) active(inf(X)) -> inf(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) active(length(X)) -> length(active(X)) inf(mark(X)) -> mark(inf(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) length(mark(X)) -> mark(length(X)) proper(eq(X1, X2)) -> eq(proper(X1), proper(X2)) proper(0) -> ok(0) proper(true) -> ok(true) proper(s(X)) -> s(proper(X)) proper(false) -> ok(false) proper(inf(X)) -> inf(proper(X)) proper(cons(any(X1), X2)) -> cons(any(any(proper(X1))), any(proper(X2))) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(length(X)) -> length(proper(X)) eq(ok(X1), ok(X2)) -> ok(eq(X1, X2)) s(ok(X)) -> ok(s(X)) inf(ok(X)) -> ok(inf(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) length(ok(X)) -> ok(length(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) any(X) -> s(X) any(proper(X)) -> any(any(any(X))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(nil) -> nil encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_inf(x_1)) -> inf(encArg(x_1)) encArg(cons_take(x_1, x_2)) -> take(encArg(x_1), encArg(x_2)) encArg(cons_length(x_1)) -> length(encArg(x_1)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encArg(cons_any(x_1)) -> any(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_mark(x_1) -> mark(encArg(x_1)) encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_inf(x_1) -> inf(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_take(x_1, x_2) -> take(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_length(x_1) -> length(encArg(x_1)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_any(x_1) -> any(encArg(x_1)) encode_top(x_1) -> top(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence take(ok(X1), ok(X2)) ->^+ ok(take(X1, X2)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X1 / ok(X1), X2 / ok(X2)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(eq(0, 0)) -> mark(true) active(eq(s(X), s(Y))) -> mark(eq(X, Y)) active(eq(X, Y)) -> mark(false) active(inf(X)) -> mark(cons(X, inf(s(X)))) active(take(0, X)) -> mark(nil) active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L))) active(length(nil)) -> mark(0) active(length(cons(X, L))) -> mark(s(length(L))) active(inf(X)) -> inf(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) active(length(X)) -> length(active(X)) inf(mark(X)) -> mark(inf(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) length(mark(X)) -> mark(length(X)) proper(eq(X1, X2)) -> eq(proper(X1), proper(X2)) proper(0) -> ok(0) proper(true) -> ok(true) proper(s(X)) -> s(proper(X)) proper(false) -> ok(false) proper(inf(X)) -> inf(proper(X)) proper(cons(any(X1), X2)) -> cons(any(any(proper(X1))), any(proper(X2))) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(length(X)) -> length(proper(X)) eq(ok(X1), ok(X2)) -> ok(eq(X1, X2)) s(ok(X)) -> ok(s(X)) inf(ok(X)) -> ok(inf(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) length(ok(X)) -> ok(length(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) any(X) -> s(X) any(proper(X)) -> any(any(any(X))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(nil) -> nil encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_inf(x_1)) -> inf(encArg(x_1)) encArg(cons_take(x_1, x_2)) -> take(encArg(x_1), encArg(x_2)) encArg(cons_length(x_1)) -> length(encArg(x_1)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encArg(cons_any(x_1)) -> any(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_mark(x_1) -> mark(encArg(x_1)) encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_inf(x_1) -> inf(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_take(x_1, x_2) -> take(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_length(x_1) -> length(encArg(x_1)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_any(x_1) -> any(encArg(x_1)) encode_top(x_1) -> top(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(eq(0, 0)) -> mark(true) active(eq(s(X), s(Y))) -> mark(eq(X, Y)) active(eq(X, Y)) -> mark(false) active(inf(X)) -> mark(cons(X, inf(s(X)))) active(take(0, X)) -> mark(nil) active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L))) active(length(nil)) -> mark(0) active(length(cons(X, L))) -> mark(s(length(L))) active(inf(X)) -> inf(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) active(length(X)) -> length(active(X)) inf(mark(X)) -> mark(inf(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) length(mark(X)) -> mark(length(X)) proper(eq(X1, X2)) -> eq(proper(X1), proper(X2)) proper(0) -> ok(0) proper(true) -> ok(true) proper(s(X)) -> s(proper(X)) proper(false) -> ok(false) proper(inf(X)) -> inf(proper(X)) proper(cons(any(X1), X2)) -> cons(any(any(proper(X1))), any(proper(X2))) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(length(X)) -> length(proper(X)) eq(ok(X1), ok(X2)) -> ok(eq(X1, X2)) s(ok(X)) -> ok(s(X)) inf(ok(X)) -> ok(inf(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) length(ok(X)) -> ok(length(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) any(X) -> s(X) any(proper(X)) -> any(any(any(X))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(mark(x_1)) -> mark(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(nil) -> nil encArg(ok(x_1)) -> ok(encArg(x_1)) encArg(cons_active(x_1)) -> active(encArg(x_1)) encArg(cons_inf(x_1)) -> inf(encArg(x_1)) encArg(cons_take(x_1, x_2)) -> take(encArg(x_1), encArg(x_2)) encArg(cons_length(x_1)) -> length(encArg(x_1)) encArg(cons_proper(x_1)) -> proper(encArg(x_1)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_top(x_1)) -> top(encArg(x_1)) encArg(cons_any(x_1)) -> any(encArg(x_1)) encode_active(x_1) -> active(encArg(x_1)) encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_mark(x_1) -> mark(encArg(x_1)) encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_inf(x_1) -> inf(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_take(x_1, x_2) -> take(encArg(x_1), encArg(x_2)) encode_nil -> nil encode_length(x_1) -> length(encArg(x_1)) encode_proper(x_1) -> proper(encArg(x_1)) encode_ok(x_1) -> ok(encArg(x_1)) encode_any(x_1) -> any(encArg(x_1)) encode_top(x_1) -> top(encArg(x_1)) Rewrite Strategy: INNERMOST