/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 634 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: car(cons(x, l)) -> x cddr(nil) -> nil cddr(cons(x, nil)) -> nil cddr(cons(x, cons(y, l))) -> l cadr(cons(x, cons(y, l))) -> y isZero(0) -> true isZero(s(x)) -> false plus(x, y) -> ifplus(isZero(x), x, y) ifplus(true, x, y) -> y ifplus(false, x, y) -> s(plus(p(x), y)) times(x, y) -> iftimes(isZero(x), x, y) iftimes(true, x, y) -> 0 iftimes(false, x, y) -> plus(y, times(p(x), y)) p(s(x)) -> x p(0) -> 0 shorter(nil, y) -> true shorter(cons(x, l), 0) -> false shorter(cons(x, l), s(y)) -> shorter(l, y) prod(l) -> if(shorter(l, 0), shorter(l, s(0)), l) if(true, b, l) -> s(0) if(false, b, l) -> if2(b, l) if2(true, l) -> car(l) if2(false, l) -> prod(cons(times(car(l), cadr(l)), cddr(l))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(nil) -> nil encArg(0) -> 0 encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(cons_car(x_1)) -> car(encArg(x_1)) encArg(cons_cddr(x_1)) -> cddr(encArg(x_1)) encArg(cons_cadr(x_1)) -> cadr(encArg(x_1)) encArg(cons_isZero(x_1)) -> isZero(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_ifplus(x_1, x_2, x_3)) -> ifplus(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_iftimes(x_1, x_2, x_3)) -> iftimes(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_shorter(x_1, x_2)) -> shorter(encArg(x_1), encArg(x_2)) encArg(cons_prod(x_1)) -> prod(encArg(x_1)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_if2(x_1, x_2)) -> if2(encArg(x_1), encArg(x_2)) encode_car(x_1) -> car(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_cddr(x_1) -> cddr(encArg(x_1)) encode_nil -> nil encode_cadr(x_1) -> cadr(encArg(x_1)) encode_isZero(x_1) -> isZero(encArg(x_1)) encode_0 -> 0 encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_ifplus(x_1, x_2, x_3) -> ifplus(encArg(x_1), encArg(x_2), encArg(x_3)) encode_p(x_1) -> p(encArg(x_1)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_iftimes(x_1, x_2, x_3) -> iftimes(encArg(x_1), encArg(x_2), encArg(x_3)) encode_shorter(x_1, x_2) -> shorter(encArg(x_1), encArg(x_2)) encode_prod(x_1) -> prod(encArg(x_1)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_if2(x_1, x_2) -> if2(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: car(cons(x, l)) -> x cddr(nil) -> nil cddr(cons(x, nil)) -> nil cddr(cons(x, cons(y, l))) -> l cadr(cons(x, cons(y, l))) -> y isZero(0) -> true isZero(s(x)) -> false plus(x, y) -> ifplus(isZero(x), x, y) ifplus(true, x, y) -> y ifplus(false, x, y) -> s(plus(p(x), y)) times(x, y) -> iftimes(isZero(x), x, y) iftimes(true, x, y) -> 0 iftimes(false, x, y) -> plus(y, times(p(x), y)) p(s(x)) -> x p(0) -> 0 shorter(nil, y) -> true shorter(cons(x, l), 0) -> false shorter(cons(x, l), s(y)) -> shorter(l, y) prod(l) -> if(shorter(l, 0), shorter(l, s(0)), l) if(true, b, l) -> s(0) if(false, b, l) -> if2(b, l) if2(true, l) -> car(l) if2(false, l) -> prod(cons(times(car(l), cadr(l)), cddr(l))) The (relative) TRS S consists of the following rules: encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(nil) -> nil encArg(0) -> 0 encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(cons_car(x_1)) -> car(encArg(x_1)) encArg(cons_cddr(x_1)) -> cddr(encArg(x_1)) encArg(cons_cadr(x_1)) -> cadr(encArg(x_1)) encArg(cons_isZero(x_1)) -> isZero(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_ifplus(x_1, x_2, x_3)) -> ifplus(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_iftimes(x_1, x_2, x_3)) -> iftimes(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_shorter(x_1, x_2)) -> shorter(encArg(x_1), encArg(x_2)) encArg(cons_prod(x_1)) -> prod(encArg(x_1)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_if2(x_1, x_2)) -> if2(encArg(x_1), encArg(x_2)) encode_car(x_1) -> car(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_cddr(x_1) -> cddr(encArg(x_1)) encode_nil -> nil encode_cadr(x_1) -> cadr(encArg(x_1)) encode_isZero(x_1) -> isZero(encArg(x_1)) encode_0 -> 0 encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_ifplus(x_1, x_2, x_3) -> ifplus(encArg(x_1), encArg(x_2), encArg(x_3)) encode_p(x_1) -> p(encArg(x_1)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_iftimes(x_1, x_2, x_3) -> iftimes(encArg(x_1), encArg(x_2), encArg(x_3)) encode_shorter(x_1, x_2) -> shorter(encArg(x_1), encArg(x_2)) encode_prod(x_1) -> prod(encArg(x_1)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_if2(x_1, x_2) -> if2(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: car(cons(x, l)) -> x cddr(nil) -> nil cddr(cons(x, nil)) -> nil cddr(cons(x, cons(y, l))) -> l cadr(cons(x, cons(y, l))) -> y isZero(0) -> true isZero(s(x)) -> false plus(x, y) -> ifplus(isZero(x), x, y) ifplus(true, x, y) -> y ifplus(false, x, y) -> s(plus(p(x), y)) times(x, y) -> iftimes(isZero(x), x, y) iftimes(true, x, y) -> 0 iftimes(false, x, y) -> plus(y, times(p(x), y)) p(s(x)) -> x p(0) -> 0 shorter(nil, y) -> true shorter(cons(x, l), 0) -> false shorter(cons(x, l), s(y)) -> shorter(l, y) prod(l) -> if(shorter(l, 0), shorter(l, s(0)), l) if(true, b, l) -> s(0) if(false, b, l) -> if2(b, l) if2(true, l) -> car(l) if2(false, l) -> prod(cons(times(car(l), cadr(l)), cddr(l))) The (relative) TRS S consists of the following rules: encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(nil) -> nil encArg(0) -> 0 encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(cons_car(x_1)) -> car(encArg(x_1)) encArg(cons_cddr(x_1)) -> cddr(encArg(x_1)) encArg(cons_cadr(x_1)) -> cadr(encArg(x_1)) encArg(cons_isZero(x_1)) -> isZero(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_ifplus(x_1, x_2, x_3)) -> ifplus(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_iftimes(x_1, x_2, x_3)) -> iftimes(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_shorter(x_1, x_2)) -> shorter(encArg(x_1), encArg(x_2)) encArg(cons_prod(x_1)) -> prod(encArg(x_1)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_if2(x_1, x_2)) -> if2(encArg(x_1), encArg(x_2)) encode_car(x_1) -> car(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_cddr(x_1) -> cddr(encArg(x_1)) encode_nil -> nil encode_cadr(x_1) -> cadr(encArg(x_1)) encode_isZero(x_1) -> isZero(encArg(x_1)) encode_0 -> 0 encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_ifplus(x_1, x_2, x_3) -> ifplus(encArg(x_1), encArg(x_2), encArg(x_3)) encode_p(x_1) -> p(encArg(x_1)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_iftimes(x_1, x_2, x_3) -> iftimes(encArg(x_1), encArg(x_2), encArg(x_3)) encode_shorter(x_1, x_2) -> shorter(encArg(x_1), encArg(x_2)) encode_prod(x_1) -> prod(encArg(x_1)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_if2(x_1, x_2) -> if2(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: car(cons(x, l)) -> x cddr(nil) -> nil cddr(cons(x, nil)) -> nil cddr(cons(x, cons(y, l))) -> l cadr(cons(x, cons(y, l))) -> y isZero(0) -> true isZero(s(x)) -> false plus(x, y) -> ifplus(isZero(x), x, y) ifplus(true, x, y) -> y ifplus(false, x, y) -> s(plus(p(x), y)) times(x, y) -> iftimes(isZero(x), x, y) iftimes(true, x, y) -> 0 iftimes(false, x, y) -> plus(y, times(p(x), y)) p(s(x)) -> x p(0) -> 0 shorter(nil, y) -> true shorter(cons(x, l), 0) -> false shorter(cons(x, l), s(y)) -> shorter(l, y) prod(l) -> if(shorter(l, 0), shorter(l, s(0)), l) if(true, b, l) -> s(0) if(false, b, l) -> if2(b, l) if2(true, l) -> car(l) if2(false, l) -> prod(cons(times(car(l), cadr(l)), cddr(l))) The (relative) TRS S consists of the following rules: encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(nil) -> nil encArg(0) -> 0 encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(cons_car(x_1)) -> car(encArg(x_1)) encArg(cons_cddr(x_1)) -> cddr(encArg(x_1)) encArg(cons_cadr(x_1)) -> cadr(encArg(x_1)) encArg(cons_isZero(x_1)) -> isZero(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_ifplus(x_1, x_2, x_3)) -> ifplus(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_iftimes(x_1, x_2, x_3)) -> iftimes(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_shorter(x_1, x_2)) -> shorter(encArg(x_1), encArg(x_2)) encArg(cons_prod(x_1)) -> prod(encArg(x_1)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_if2(x_1, x_2)) -> if2(encArg(x_1), encArg(x_2)) encode_car(x_1) -> car(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_cddr(x_1) -> cddr(encArg(x_1)) encode_nil -> nil encode_cadr(x_1) -> cadr(encArg(x_1)) encode_isZero(x_1) -> isZero(encArg(x_1)) encode_0 -> 0 encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_ifplus(x_1, x_2, x_3) -> ifplus(encArg(x_1), encArg(x_2), encArg(x_3)) encode_p(x_1) -> p(encArg(x_1)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_iftimes(x_1, x_2, x_3) -> iftimes(encArg(x_1), encArg(x_2), encArg(x_3)) encode_shorter(x_1, x_2) -> shorter(encArg(x_1), encArg(x_2)) encode_prod(x_1) -> prod(encArg(x_1)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_if2(x_1, x_2) -> if2(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence shorter(cons(x, l), s(y)) ->^+ shorter(l, y) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [l / cons(x, l), y / s(y)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: car(cons(x, l)) -> x cddr(nil) -> nil cddr(cons(x, nil)) -> nil cddr(cons(x, cons(y, l))) -> l cadr(cons(x, cons(y, l))) -> y isZero(0) -> true isZero(s(x)) -> false plus(x, y) -> ifplus(isZero(x), x, y) ifplus(true, x, y) -> y ifplus(false, x, y) -> s(plus(p(x), y)) times(x, y) -> iftimes(isZero(x), x, y) iftimes(true, x, y) -> 0 iftimes(false, x, y) -> plus(y, times(p(x), y)) p(s(x)) -> x p(0) -> 0 shorter(nil, y) -> true shorter(cons(x, l), 0) -> false shorter(cons(x, l), s(y)) -> shorter(l, y) prod(l) -> if(shorter(l, 0), shorter(l, s(0)), l) if(true, b, l) -> s(0) if(false, b, l) -> if2(b, l) if2(true, l) -> car(l) if2(false, l) -> prod(cons(times(car(l), cadr(l)), cddr(l))) The (relative) TRS S consists of the following rules: encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(nil) -> nil encArg(0) -> 0 encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(cons_car(x_1)) -> car(encArg(x_1)) encArg(cons_cddr(x_1)) -> cddr(encArg(x_1)) encArg(cons_cadr(x_1)) -> cadr(encArg(x_1)) encArg(cons_isZero(x_1)) -> isZero(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_ifplus(x_1, x_2, x_3)) -> ifplus(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_iftimes(x_1, x_2, x_3)) -> iftimes(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_shorter(x_1, x_2)) -> shorter(encArg(x_1), encArg(x_2)) encArg(cons_prod(x_1)) -> prod(encArg(x_1)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_if2(x_1, x_2)) -> if2(encArg(x_1), encArg(x_2)) encode_car(x_1) -> car(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_cddr(x_1) -> cddr(encArg(x_1)) encode_nil -> nil encode_cadr(x_1) -> cadr(encArg(x_1)) encode_isZero(x_1) -> isZero(encArg(x_1)) encode_0 -> 0 encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_ifplus(x_1, x_2, x_3) -> ifplus(encArg(x_1), encArg(x_2), encArg(x_3)) encode_p(x_1) -> p(encArg(x_1)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_iftimes(x_1, x_2, x_3) -> iftimes(encArg(x_1), encArg(x_2), encArg(x_3)) encode_shorter(x_1, x_2) -> shorter(encArg(x_1), encArg(x_2)) encode_prod(x_1) -> prod(encArg(x_1)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_if2(x_1, x_2) -> if2(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: car(cons(x, l)) -> x cddr(nil) -> nil cddr(cons(x, nil)) -> nil cddr(cons(x, cons(y, l))) -> l cadr(cons(x, cons(y, l))) -> y isZero(0) -> true isZero(s(x)) -> false plus(x, y) -> ifplus(isZero(x), x, y) ifplus(true, x, y) -> y ifplus(false, x, y) -> s(plus(p(x), y)) times(x, y) -> iftimes(isZero(x), x, y) iftimes(true, x, y) -> 0 iftimes(false, x, y) -> plus(y, times(p(x), y)) p(s(x)) -> x p(0) -> 0 shorter(nil, y) -> true shorter(cons(x, l), 0) -> false shorter(cons(x, l), s(y)) -> shorter(l, y) prod(l) -> if(shorter(l, 0), shorter(l, s(0)), l) if(true, b, l) -> s(0) if(false, b, l) -> if2(b, l) if2(true, l) -> car(l) if2(false, l) -> prod(cons(times(car(l), cadr(l)), cddr(l))) The (relative) TRS S consists of the following rules: encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(nil) -> nil encArg(0) -> 0 encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(cons_car(x_1)) -> car(encArg(x_1)) encArg(cons_cddr(x_1)) -> cddr(encArg(x_1)) encArg(cons_cadr(x_1)) -> cadr(encArg(x_1)) encArg(cons_isZero(x_1)) -> isZero(encArg(x_1)) encArg(cons_plus(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) encArg(cons_ifplus(x_1, x_2, x_3)) -> ifplus(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_times(x_1, x_2)) -> times(encArg(x_1), encArg(x_2)) encArg(cons_iftimes(x_1, x_2, x_3)) -> iftimes(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_p(x_1)) -> p(encArg(x_1)) encArg(cons_shorter(x_1, x_2)) -> shorter(encArg(x_1), encArg(x_2)) encArg(cons_prod(x_1)) -> prod(encArg(x_1)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_if2(x_1, x_2)) -> if2(encArg(x_1), encArg(x_2)) encode_car(x_1) -> car(encArg(x_1)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_cddr(x_1) -> cddr(encArg(x_1)) encode_nil -> nil encode_cadr(x_1) -> cadr(encArg(x_1)) encode_isZero(x_1) -> isZero(encArg(x_1)) encode_0 -> 0 encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_plus(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) encode_ifplus(x_1, x_2, x_3) -> ifplus(encArg(x_1), encArg(x_2), encArg(x_3)) encode_p(x_1) -> p(encArg(x_1)) encode_times(x_1, x_2) -> times(encArg(x_1), encArg(x_2)) encode_iftimes(x_1, x_2, x_3) -> iftimes(encArg(x_1), encArg(x_2), encArg(x_3)) encode_shorter(x_1, x_2) -> shorter(encArg(x_1), encArg(x_2)) encode_prod(x_1) -> prod(encArg(x_1)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_if2(x_1, x_2) -> if2(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST